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A nonlinear variable-coefficient representation for the rapid-pressure covariance 
appearing in the Reynolds stress and heat-flux equations, consistent with the 
Taylor-Proudman theorem, is presented. The representation ensures that the modelled 
second-order equations are frame indifferent with respect to rotation in a number of 
different flows for which such an invariance is required. The model coefficients are 
functions of the state of the turbulence; they are valid for all states of a mechanical 
turbulence, attaining their limiting values only when the limit state is achieved. This is 
accomplished by a special ansatz that is used to obtain ~ analytically - the coefficients 
valid away from the realizability limit. Unlike other rapid-pressure representations in 
which extreme states are used to set model constants, here the coefficients are variable 
functions asymptotically consisted with - not fixed by - the limit states of the 
turbulence field. The mathematical principles invoked do not specify all the coefficients 
in the model; undetermined coefficients appear as free parameters which are used to 
ensure that the representation is asymptotically consistent with an experimentally 
determined equilibrium state of homogeneous sheared turbulence. This is done by 
ensuring that the modelled evolution equations have the same fixed points as those 
obtained from numerical and laboratory experiments for the homogeneous shear. 
Results of computations of homogeneous shear, with rotation and with curvature, are 
shown. Results are better, in a wide class of planar flows for which the model has not 
been calibrated, than those of other nonlinear models. 

1. Introduction 
Most turbulence models are devised for use in inertial coordinate systems. Ad hoe 

changes are then made to reflect the unusual effects on turbulence of swirl, curved 
streamlines or rotation of the coordinate system. Typically one makes the lengthscale 
depend on Richardson number or adds terms to the dissipation equation and calibrates 
to match observed behaviour. This approach does not make use of the mathematical 
requirements that the dependent variables and their evolution equations must satisfy 
and leads to models that perform poorly when used in situations substantially different 
from the benchmark flows for which they have been calibrated. There is no reason why 
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a second-order modelling method cannot be successfully applied to a high-Reynolds- 
number rotating turbulence: no new unknown terms appear in the equations and, for 
moderate Rossby number, very little of the phenomenology on which the method is 
based changes. 

The effect of rotation on the second-order moments is felt through the rapid- 
pressure-velocity correlation and the Coriolis terms. The difficulty with the equations, 
as modelled up to now, can be seen when the equations are transformed to a rotating 
coordinate system : they are not materially frame indifferent in the two-dimensional 
limit. This requirement, expressed in the context of a Taylor-Proudman reorganization, 
Qj ui,j = 0, has been named the principle of two-dimensional frame invariance 
(2DMFI) by Speziale (1989). There are, in fact, a number of flow fields that are 
materially frame indifferent (MFI) and 2DMFI is a subset of a larger class of such 
flows (as will be described more precisely). 

The problem with the current modelled second-order equations results from the 
inability of the rapid-pressure correlation model to reflect the physics associated with 
the reduction of stretching of vorticity in a particular direction. Such phenomena, 
occurring in a variety of flows, are most readily seen in the context of Taylor-Proudman 
effects occurring in bounded rotating flows. As the flow becomes two-dimensional, in 
the limit of rapid rotation (about a vertical coordinate), the flow becomes horizontally 
divergence free and the evolution equations become independent of the rotation of the 
frame. This is a form of realizability : in a particular class of flows that are horizontally 
non-divergent the turbulence is MFI and so should the set of modelled equations be. 
Mathematically this requires the rapid-pressure covariance representation, appearing 
on the right-hand side of the second-order moment equations, to equal the Coriolis 
terms, in order to make the equations frame invariant. A rapid-pressure model 
consistent with these facts - reflecting more of the information contained in the 
Navier-Stokes equations - is required if one is to compute more complex three- 
dimensional flows. 

As a general tool is being developed to compute a wide class of flows, for which there 
may not be well-documented benchmark flows with which to calibrate coefficients, it 
is necessary to construct a model from first principles incorporating more of the 
physics. In the present representation for the rapid-pressure-strain correlation the use 
of calibration constants, which do not come from first principles, have been minimized. 
This is done this by requiring the representation to have the proper behaviour in five 
different limits. The representation must be: (i) frame invariant for a number of, not 
unusual, flow situations that are horizontally divergence free; (ii) realizable when an 
arbitrary eigenvalue of the Reynolds stress vanishes; (iii) jointly realizable when an 
eigenvalue of the tensor (00) (us u j )  - (Oui) (&,) vanishes; (iv) satisfy the isotropic 
limit; and (v) be asymptotically consistent with a stationary state of the turbulence, 
(DIDt) bij = 0. Of these five principles the last one is a statement based on experimental 
approximation rather than mathematical fact. It is tacitly assumed that for a specific 
class of flows, to a reasonable approximation, there exists an equilibrium state to which 
the flow relaxes upon the removal of any perturbing forces. 

Ensuring the proper frame invariance of the modelled second-moment equations is 
done by requiring that the rapid-pressure-velocity correlation representations in the 
heat-flux and Reynolds stress equations satisfy the ' geostrophic ' constraints 
(Ristorcelli 1987; Ristorcelli & Lumley 1991 b):  

C p q n  Q n  X i p q j  = Cqjn Q n  ( U i  u q ) ,  

c p q n  0% x p q i  = Cqin Q n  (uq 0), 

(1) 

(2) 
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where Xipqj and XPqi are the volume integrals of the two-point covariance that make 
up the rapid-pressure covariance. The meaning of these constraints will be made clear 
during the course of their derivation. Some preliminary discussion is given here to 
provide a context for subsequent developments. 

The term geostrophic is borrowed from the meteorological literature where it is used 
to describe the low-Rossby-number balance between Coriolis and pressure forces in the 
evolution equations of the large-scale atmosphere (Lesieur 1991). A very simple and 
elegant physical demonstration of the two-dimensionalization of the large scales of a 
flow by rotation is given in the rotating tank experiments of Hopfinger, Browand & 
Gagne (1982). The constraint, however, is independent of how the flow is two- 
dimensionalized and is, therefore, independent of Rossby number. Taylor-Proudman- 
type flows are actually a subset of a class of flows that are frame indifferent. The set 
consists of flows in which (i) u3 = 0, or (ii) the velocity is independent of the coordinate 
along the axis of rotation, or (iii) the vertical velocity equation is in hydrostatic 
balance. All of these flows are horizontally divergence free and are therefore 
characterized by an absence of vortex stretching along the axis of rotation. The 
condition of being horizontally divergence free is necessary for MFI. 

The present article is a description, derivation and validation of a representation for 
the rapid-pressure covariance that ensures the frame invariance of the modelled 
Reynolds stress when the large scales of the motion become horizontally non- 
divergent. This representation also satisfies the principle of two-dimensional material 
frame indifference. It is not, however, the first rapid-pressure model to have satisfied 
this principle; the constant coefficient model of Haworth & Pope (1986) is also frame 
indifferent in the two-dimensional limit. Part of the present derivation has been given 
earlier in departmental reports (Ristorcelli 1987, 1991 ; Ristorcelli & Lumley 1991 b), 
but in those previous developments of the model several free parameters were, for 
simplicity, set to zero. In this extension of that work the stationary points of the 
homogeneous shear are used to set free parameters occurring in the model. This 
ensures that the fixed points of the modelled differential equations are the same as the 
experimentally observed fixed points of a particular physical flow. This is done without 
sacrificing any of the mathematical principles built into the model. 

The next section of this article defines and specifies the problem. Section 3 presents 
a derivation of the tensor polynomial model for the rapid-pressure correlation; the 
constraints and a derivation of the new geostrophic constraint are presented and 
discussed (94). Also included (95) is a mathematically precise definition of the types of 
fields that lead to frame indifferent evolution equations. It will be seen that there are 
several flow situations for which material frame indifference is an important 
consideration especially if a general model is sought. A new ansatz for the rapid- 
pressure correlation produces a model valid away from both the geostrophic - or 
horizontally divergence free - and realizability limits ($6). Section 7 uses results from 
matrix algebra to collapse the model to a structure similar to other rapid-pressure 
models with some interesting differences. The model is seen to have the same tensor 
bases as the FLT model (Fu, Launder & Tselepidakis 1987) and in the limit of a planar 
mean flow it has the same tensor bases as the quasi-linear SSG model of Speziale, 
Sarkar & Gatski (1991). Sections 8 and 9 show computations done with the model and 
compare the results to other models. Following this in $10 a general discussion of 
various modelling issues such as realizability, the limitation of constant coefficient 
models and the use of fixed points as a limit for calibrating turbulence models is given. 
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2. The rapid-pressure covariance 
In incompressible turbulence in a rotating coordinate system, with buoyancy effects 

in the Boussinesq approximation, the Reynolds stress equations have the following 
form: D 

- ( M i  U j )  + 2(6ikp ( U p  Uj) C j k p  ( u p  U i ) )  Qk R0-l Dt 

= (out> pj + (0uj> pi - [(uj u p >  U i 9 p  + ( U i  u p >  u j , p l -  (ui uj u p ) , p  

- [ ( p , j  ui> + ( p , i  uj>l+ Re-' ( U i  ~ j > , ~ ,  - 2Re-l ( u i , p  upp),  (3) 

D 
Dt 
- (eu i )  + 26pik Q, (eu,) RO-1 = - [(euj)  ui,j + (Mi uj) T , ~ ]  + (ee)  pi 

- (Ouiu i ) , j - (p , iO)+  Re-'(l + P ~ - ' ) ( ( B U , ) , ~ ~ - ~ ( ~ , ~ U ~ , ~ ) .  (4) 

The velocity has been normalized by a characteristic velocity u, and the Rossby number 
is Ro = uc/QR, where R, is a lengthscale and Q the rotation rate of the frame of 
reference. The gravity and rotation vectors are aligned with the 3-axis. Our concern is 
with the pressure-velocity and -temperature correlations, ( p , .  u i )  and ( P , ~  0). An 
equation for the pressure fluctuations comes from the divergence of the Navier-Stokes 
equations for the fluctuating velocity: 

which produces a Poisson equation for fluctuating pressure. The standard linear 
decomposition recognizes three terms : 

-p,ii = 2[ uiYp + E p i k  52, Ro-'1 up,i, (6)  

- p ? . = u . . u . . - ( u .  92% 273 3 %  z , j  u 5 %  .) 3 (7) 

p,:i = Pi S,i, (8) 

where p', p s ,  p b  are respectively the rapid pressure, the slow or return-to-isotropy 
pressure, and the buoyancy pressure. The effects of rotation are felt through the rapid 
pressure, p'. Solution of the Poisson equation for the rapid pressure is by application 
of Green's theorem: 

$(x) = - ( 4 ~ ) ~ ~  $(x'),~~ dx'/(x - x'). s 
It is the moments of the solution that are required to close the second-order equations. 
For a homogeneous mean field, more than an integral scale away from any surfaces, 
a straightforward interchange of the order integration and averaging produces : 

where 

Xipqj = (4~)- '  ( u ~ ( x )  u ~ ( x ' ) ) , ~ . ~ .  dx'/(x-x'). (12) s 
The construction of a tensor polynomial model for the volume integrals of the two- 
point correlations, Xijkl  and Xijk ,  is the subject of this article. The rapid-pressure 
covariance integral appearing in the heat-flux equations, Xijk ,  is treated as the 
Reynolds stresses and the heat fluxes are linked through Cauchy-Schwarz inequalities, 
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(60) (u i  u,) - (624) (Ouj) 2 0 and their modelling cannot be done independently. The 
rapid-pressure term appearing in the Reynolds stress equations necessary to treat the 
mechanical turbulence problem is the focus of this article. 

3. A representation for the rapid-pressure covariance 
A constitutive relation in which the integral of the two-point covariance is 

parameterized by a local function of the anisotropy tensor and heat-flux vector is 
proposed. The most general forms of such relationships are the following tensor 
polynomials : 

x i j k l /<up  u p >  = ' i j  sk, + A2(siik sjL + sil sj,> 

+ A ,  Sij b,, + A 4  bij S,, + A5(bi, Sj, + b,, 6 j k  + 6ik bj, + Si, bjk) 

+A6 Sij bEl + A ,  bij 6,, + A,(b;, Sj, + b;, Sj, + 6 i k  b;, + si, b;,) 

+ A l l  bij bi, + A l ,  b;i b,, + A13(b;, bj, + b;, bjk + bik b;, + bi, bik) 

+ bij  bkL + AIO(bik bjl  + bil bjk)  

+ A14 b:j biL + A15(b:k b;, + b:, b;k),  

X p k j  = D l  (cup> s k j +  DZ((euk> 6p j  + (eu j>  s p k )  

+ D3 ( "p )  bk j+ D4((0uk) bpj+ ( O U j )  b p k )  

+ D5 @up> bi, + D,((%) b;j + (0u,> b;,) 

+ LD7 bgp 'kj + D8(bqk ' p j  + b g j  ' p k ) ]  ("g)  

+ [D9  bgp bkj + DIO(bqk + bqj ' p k ) ]  ("g) 

+ P l ,  b q p  bEj + W b g ,  b;j + b, b 3 l  ( O U , )  

+ [Dl, biP bEj +D,a(b:, b;j + bij b&)l (0u,>, 

+ LD13 

+ [D15 ' i p  bkj + 
' k j  +D14(bik ' p j  + b$ ' p k ) ]  (Oug> 

bpj + b%j b p k ) l  (Oug> 

where bij is the anisotropy tensor bgj = (u i  u j ) / (ug  ug) - 1/36,, and (eui)  is the 
turbulent heat flux. Following Pope's linearity principle only terms linear in the heat 
flux are kept. The Ai and Di are functions of the invariants of bij and ( 0 ~ ~ ) .  

As complex as these expressions appear one should keep in mind that they result 
from nothing more complex, in concept, than a Buckingham PI theorem. For tensor 
quantities invariance under a larger group of transformations is required. The objective 
is to ensure that the above parameterization has as many of the mathematical properties 
as the original quantity, X. 

Parameterizing the integral of a two-point correlation in terms of the local 
anisotropy tensor based on the Reynolds stress is a substantial simplification requiring 
consideration. For turbulence with a short term memory and limited awareness 
Lumley (1970) has discussed the conditions under which such a constitutive relation is 
tenable. Lumley (1967) carried out an expansion procedure to indicate how the 
truncation errors scale. From one point of view, the constitutive relation proposed can 
be seen as the first term in a functional Taylor series expansion for the rapid-pressure 
correlation. As the correlation decays with distance the primary contribution to the 
integral will come from regions within an integral lengthscale of the local position. In 
a quasi-homogeneous turbulence, homogeneous over a scale /, the first term will 
constitute a good approximation. Retaining higher-order terms of the functional 
Taylor series expansion which involves spatial and temporal derivatives of bii 
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substantially complicates the problem. It is expected that the retention of only the first- 
order term captures enough of the physics to allow prediction suitable for engineering 
purposes. 

The parameterization above is not expected to be valid for Ro < 1 or in other 
situations when the two-point statistics are strongly anisotropic and not characterizable 
by a single integral scale. Consider that the two-point velocity covariance appearing in 
the integrand is related to the spectral energy density tensor; thus the proper 
parameterization of the rapid pressure is equivalent to the proper parameterization of 
the spectral energy density tensor. DNS indicates that rapidly rotating homogeneous 
turbulence with isotropic initial conditions will in general stay isotropic ; that is when 
the anisotropy of the Reynolds stress is used as a measure of anisotropy. The fact 
is that the energy spectrum does not stay isotropic and the characterization of its 
anisotropy solely in terms of the Reynolds stresses in rapidly rotating turbulence is 
misleading. The coherence of the flow, in various directions, is substantially modified 
and substantially anisotropic and constitutive arguments put forward by Lumley 
(1967) assuming ‘limited awareness’ are no longer valid and must be reassessed. In 
such situations additional tensor quantities parameterizing the energy spectrum are 
necessary: perhaps the appropriate measure of the anisotropy of the energy spectrum 
is the anisotropy of the coherence. Perhaps the structural tensor ideas such as those put 
forward by Reynolds (1989) may be a step in the direction of handling flows in which 
such effects are important. The present theory is not one which is intended to cover the 
case of Ro < 1 for which such a simple parameterization of the energy spectrum is 
impossible. 

In the light of the unusual effects of rotation the usefulness of other assumptions 
made in these types of closures also requires investigation. In addition to comments 
made in invoking the above constitutive relation there are several phenomena, peculiar 
to rotating flows, that may be in conflict with assumptions made in such single-point 
closures which will limit the modelling to a specific class of flows. In particular the 
inertial wave field associated with the rotation may interfere with: (i) the energy 
cascade from the large to the small scales of the flow, (ii) the universal equilibrium 
assumed for the small scales of the flow, and (iii) the assumed steadiness of the mean 
flow as it effects the assumption of stationarity of the turbulence statistics. The first two 
of these issues deals with the parameterization of the spectral cascade and is therefore 
an issue involving the dissipation equation. These issues are now individually 
considered. 

In a time-varying mean flow rotating with speed 0 there will be low-frequency 
inertial oscillation: frequencies primarily lower than but up to 2 0 .  For a quasi-steady 
assumption to be valid, changes in the mean flow must be slow with respect to the 
turbulence’s ability to adjust to the imposed changes in the mean. This requires that 
2 0  < c / k  and becomes a lower bound for a Rossby number, Ro = c / 2 0 k  > 1, for 
which a quasi-equilibrium theory is appropriate. 

Similar to a stably stratified density field in which stratification inhibits particle 
motions in the vertical direction, rotation inhibits transverse displacements of fluid 
particles. Similar to the radius of gyration of a charged particle in a magnetic field, the 
lateral displacement of a turbulent fluid element in a rotating frame can be 
characterized by a lengthscale (q2/3)’I2/20 where q2 = (u j  u j ) .  This lengthscale must be 
larger than the turbulence lengthscale L‘ - (q2 /3 )3 ’2 /~  to ensure that the transverse 
confinement by the Coriolis forces does not affect the motions associated with the 
cascade of the fluctuating field. This produces a similar bound on the turbulent Rossby 
number Ro = e / 2 0 k  > 3 / 2 .  
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The phase coherence necessary for the cascade of energy to the smaller scales of the 
motion will be interfered with if the production scales of the motion ~ k '  - 1, where K 

is the wavenumber, are subject to an inertial wave field. The inertial wave interference 
with the nonlinear cascade mechanism will make the current parameterizations for the 
dissipation invalid. There are some limits on the rotation rate that can be set in order 
for the current parameterization of the cascade to be adequate. Consider the Rossby 
number defined as a ratio of the vorticity of the production scales of the motion to the 
background vorticity Rot = (q2/3)11'/252/ = 3e/252q2 using 6 = (q2/3)1/2/k'. A spectral 
Rossby number can also be defined as Ro(K) = u ( ~ ) / 2 5 2 / ( ~ )  = (~E(~)) ' / ' /2 l2(271. /~)  
which using the inertial range scaling E(K) = a213~-513  and e = (q2/3)"'/k' becomes 
Ro(K) - 0.2 ( K / ) ' / ~ R O , .  The effects of rotation decrease as the wavenumber increases. 
For the inertial oscillations associated with the rotation not to interfere with the 
cascade mechanism Ro(K) > 1 for ~ k '  - 2 is required. Thus for Rot > 3 the usual 
parameterization of the spectral cascade rate, e, in terms of the energy-containing 
scales of the motion is appropriate. For Rot < 3 the current dissipation equation begins 
to require modification. How the dissipation equation is to be changed to account for 
the effects of rotation on the cascade rate is an unresolved issue that is the topic of 
current research. It is, however, clear that the assumption of the small-scale equilibrium 
with the large scales of the motion is valid in most high-Reynolds-number rotating 
flows of interest if Rot > 1 : the Rossby number of the dissipation scales of the motion 
is Roe = Re:/' Rot and therefore the dynamics of the small-scale motions are not 
directly dependent on the effects of rotation for Rot > 1. 

Thus the Rossby number of the dissipation scales of the flow is large and their 
dynamics are not influenced by the rotation and they can be assumed to be in 
equilibrium with larger scales of the flow (which are affected by rotation). This criterion 
is necessary to investigate to ensure the adequacy of the assumption of universal 
behaviour of the small scales. If this is not the case the smallest scales of the flow will 
have their own dynamics and will not be closely linked to the large scales of the flow 
through an inertial subrange characterized by a constant spectral flux and 
parameterizable by the large scales of the flow. 

Having dealt with some phenomenological issues and their implications on bounds 
for the Rossby number for which a representation of the rapid pressure is being sought, 
the mathematical nature of the rapid-pressure-velocity and -temperature covariances 
are now investigated. 

4. The geostrophic constraint 
The geostrophic constraint is now derived and discussed. The issue of material frame 

indifference is discussed first: it is the physical fact that leads to the geostrophic 
constraint. There are a variety of flows that are materially frame indifferent (MFI). For 
turbulence in which the velocity field does not depend on the coordinate along the axis 
of rotation Speziale (1985, 1989) has shown that the incompressible Navier-Stokes 
equations are MFI. It will be seen that materially frame indifferent fields are 
horizontally divergence-free velocityfields, u , ~  + v , ~  = - w , ~  = 0. MFI is, in fact, related 
to the absence of the stretching of vorticity along the axis of rotation and not 
necessarily the coordinate independence of the flow. MFI fields include velocity fields 
which have no component along the axis of rotation, as is seen in Taylor-Proudman- 
type flows in bounded domains. They also includes flows with strong stable 
stratification or in small aspect ratio situations. These ideas are made more precise in 
the following developments. 
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First, a point on nomenclature: Reynolds’ (1989) nomenclature will be adopted for 
these discussions. A velocity field that is a function of two dependent variables will be 
called two-dimensional. A velocity field in which the velocity vector has only two 
components but, in general, can depend on three dependent variables will be called 
two-componential. 

A horizontally divergence-free velocity field can be represented in the following way : 

u p  = &pqk 52k $>q + 52p ui si3 = &pqk 52k $,q + 52p w ;  

up ,p  = Q P  ui,p si, = 52, W , L  = 0.  

(13) 

(14) 

incompressibility leads to the horizontally divergence-free condition, 

For general $ = $(x, y ,  z )  inversion produces 

Note that this representation includes as some special cases : (i) two-component 
velocity fields whose velocity components lie in planes perpendicular to the axis of 
rotation, SZju, = 0, or (ii) three-component velocity fields that are independent of the 
dependent variable along the axis of rotation, Qj ui,j = 0, for which $ = $(x, y )  and 

$ 9 ~  = ‘qpk  52k ‘q .  

For a streamfunction $ = $(x, y ,  z) ,  the vorticity is 

wi = 52, $, i l -  Qi $,qq- 

w, = - vg $, 

4, + uj w3,j = (Wj + 252,) u,,j + vw3,jj. 

(17) 

The vertical component of the vorticity is given by the horizontal Laplacian of the 
streamfunction : 

which evolves according to the vertical component of the curl of the Navier-Stokes 
equations : 

(19) 

This is the prognostic equation for the streamfunction and for several flows it is closed 
with respect to the streamfunction: all the quantities in the equation are known as a 
function of $(x, y ,  z). The velocities appearing as coefficients are functions of the 
streamfunction or, in the case of u3, obey a linear passive-scalar-type equation 
independent of rotation for a particular class of flows. Inspection shows that the 
vertical vorticity equation is frame invariant if there is no stretching of vorticity along 
the axis of rotation; that is when the flow is horizontally divergence free, Q,u, ,~  = 0. 
(The boundary conditions are assumed to be independent of rotation.) As u, and uz are 
determined by the streamfunction, it merely remains to see under what conditions the 
evolution of u, is also frame invariant. The classes of flows for which this type of 
reasoning is appropriate are now investigated in more depth. 

The simplest MFI flow is one in which w = 0. The whole flow evolves according to 
one equation, that for the vertical vorticity. In the absence of w there is no axial 
stretching of vorticity and the vertical vorticity equation is MFI. Let it be described 
in the following way. 

Case 1. SZj uj = 0, $ = $(x, y ,  z )  

Using Reynolds’ nomenclature this flow can be called two-componential (2C); it is 
not, however, two-dimensional. The streamfunction can be a function of all three 
coordinate directions and the field is horizontally divergence free as there is no velocity 

(18) 
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along the axis of rotation. Lack of horizontal divergence, which is achieved because 
w = 0, is a sufficient condition for MFI of this flow. This might correspond to the flow 
after turbulent collapse in a stably stratified medium. Lesieur (1991) or MCtais & 
Herring (1 989) have discussed and investigated such phenomena. A noteworthy aspect 
of such flows is the strong vertical variability leading to a vertical shear thought to be 
responsible for a major portion of the dissipation. 

In addition to covering strongly stratified flows and large Brunt-Vaisalla frequency, 
case 1 also covers flows in low-aspect-ratio situations, H / L  + 0. Investigation of the 
non-dimensional continuity equation shows w + 0 as H / L  + 0. Such a flow also 
includes mesoscale and global geophysical flows. 

A different class of flows is now addressed, which are of interest in geophysical 
applications and require the Rossby number be small. The Navier-Stokes equations in 
a rotating frame, in the Boussinesq approximation, and in dimensional form, are 

ui,t + uj ui,j + 2Cikp  up = - (1 /p)p,, + pg68.3, + vu6,jj. (20) 
Non-dimensionalizing the equation with respect to the characteristic vertical and 
horizontal velocities ( W,, U,) and dimensions (H ,  L), the highest-order terms, to order 
Rossby number, in the horizontal momentum equations are 

Ui , t+2CikpQLup  = -(l/p)p,i. (21) 
The time-derivative term is order (QT)-’ with respect to the Coriolis and pressure 
balance. For scales of the motion in which QT $ 1 the geostrophic balance ensues: 

2eikpQ;up = -(l/p)p?i; (22) 
the streamfunction and the pressure are identical quantities (moduZo constants of 
proportionality) as can be verified by substitution of the representation of the velocity 
in terms of the streamfunction into the geostrophic balance. The equation for the 
vertical velocity is 

In the absence of buoyancy this equation is MFI if the flow is horizontally divergence 
free since the $-equation is MFI when horizontally divergence free Qiu3,j = 0. Note 
that the pressure and velocity in the w-equation are generated by $. This appears to 
be regardless of the dimensionality of the flow, i.e. for all $ = $(x,y,z), until the 
geostrophic balance of the horizontal vorticity equation is investigated : 

w,t + uj w,j = - (l/p) P ~ Z  + pg6 + vw,jj* (23) 

252;up,, = 0. 

Consistency requires that the flow depend only on the velocity coordinates in planes 
perpendicular to the axis of rotation - the flow is two-dimensional in the sense of $ = 
$(x,y). Let it be called the geostrophic balance in the absence of buoyancy and denote 
it case 2. 

In the cases described above, a streamfunction is suggested by either kinematic 
issues, H / L - 0 ,  or by a balance of the dynamical equations, Ro-0. The arguments 
are asymptotic and suggest physical situations in which MFI is a consideration. The 
fact is, any three componential, two-dimensional flow, w = w(x,y) and $ = $(x,y), is 
MFI. This is the case that Reynolds’ (1994) treats and is the flow on which Speziale 
(1985) based his 2DMFI principle. In this case a streamfunction is postulated and one 
investigates under what conditions it leads to a MFI flow. Reynolds (1994) proof is a 
little different from that of Speziale (1989). Reynolds proves MFI by showing that the 
Coriolis terms in the momentum equations can be absorbed into the pressure, leaving 
the three momentum equations independent of the rotation if and only if $ = $(x,y). 
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MFI can easily be shown by noting that such a field is horizontally divergence free and 
thus the vertical vorticity equation is frame invariant and, because of the independence 
of the flow on z ,  the w-equations satisfy a MFI passive scalar equation. This case and 
the geostrophic flow are covered in case 2. 

Case 2.  Qj ui,j = 0, $ = $(x, y )  

Such a field is horizontally divergence free, which is a necessary but not sufficient 
condition, as indicated by the constraints placed on the coordinate dependence of 
the flow field by the horizontal vorticity equation. Note that the velocity field can still 
have three components and that its vertical component obeys a passive scalar equation. 
The Taylor-Proudman theorem is consistent with such a flow field. Note that in 
very common flows, a bounded domain with no-flux boundary conditions such that 
Q p u p  = 0 on the boundary, the Qjui, j  = 0 case includes Qju j  = 0. The Taylor- 
Proudman theorem applied in an unbounded domain is included in this category. 

A similar result is possible when buoyancy enters the geostrophic balance. The 
geostrophic balance of the horizontal components of the vorticity equation produce 
the following diagnostic relationship : 

Consistency requires the temperature to be directly related to the streamfunction ; the 
pressure and temperature are related according to a hydrostatic balance. This class of 
flows is delineated mathematically in the following way. 

Case 3. Q j u i , j ~ i 3  = 0, $ = $(x,y,z)  
The streamhnction is a function of all three coordinate directions though now 

w = w(x, y) .  Thus for this class of flows or for the scales of the motion where QT 9 1 ,  
lack of horizontal divergence is a sufficient condition for MFI. 

Note that these results require low Rossby number but do not require a small aspect 
ratio. In the small-aspect-ratio case, H / L  + 0, and lack of horizontal divergence and 
w+ 0 are asymptotically equivalent statements both leading to MFI flows as already 
indicated. A situation similar to the low-aspect-ratio or strongly stratified cases occurs 
when magnetic forces act to suppress the vertical component of the velocity field. 

To summarize the perorations above, it has been shown that when the flow is 
horizontally divergence free the vertical vorticity equation, which is the evolution 
equation for the streamfunction, is MFI. MFI of the whole field is then determined by 
the nature of the equation for the vertical velocity. If (i) w = 0, or (ii) the pressure is 
independent of the axial coordinate or (iii) determined by a hydrostatic balance with the 
temperature, then the flow will be MFI. There may be other situations. 

For the modelled set of second-order equations to be MFI in the specific flow 
conditions mentioned, the rapid-pressure correlations must satisfy the ‘geostrophic’ 
constraints, 

(26) 

(27) 

epqn Q n  x i p q j  = eqjn Q n  (ui uq), 

cpqn Q n  x p q i  = cqin Q n  (uq 0). 
A proof of this constraint is now given for $ = $(x,y). Consider the portion of the 
rapid-pressure correlation associated with the rotation : 

Insert the expression for the velocity field in terms of the streamfunction into the 
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integral and contract to produce, in the integrand, the Laplacian of the streamfunction, 
$,p = eqpk 52, up. This reduces the volume integral of a two-point statistic to a one- 
point statistic which is identical with the Coriolis terms, 

epqk 52, R0-l Xipqj = R0-l (ui $,i) = Ro-’spjk 0, (ui u p )  (29) 

after application of Green’s theorem. The geostrophic constraint epqn 52, Xipqj  = 

eqjn 52, (ui up)  then follows. Inserting this equality into the rapid-pressure covariance 
representation on the right-hand side of the Reynolds stress equations cancels the 
Coriolis terms appearing on the left-hand side of the equation, leaving the equations 
indifferent to rotation. A similar analysis produces the geostrophic constraint on the 
rapid-pressure covariance appearing in the heat-flux equation. The proof of the 
geostrophic constraint when $ = $(x, y ,  z )  is more complex but easily enough obtained 
with some deep reflection using similar ideas. 

Thus with the satisfaction of the geostrophic constraint the modelled second-order 
equations will be MFI when the flow field attains the non-trivial configurations given 
above. In the context of single-point closures in which the Reynolds stresses are used 
to model the correlation, there are some qualifications which will be made in the 
appropriate section below. 

A point of clarification : geostrophic turbulence has small horizontal divergence 
because its spectral Rossby number is small for a sizeable portion of the scales of the 
motion. This latter qualification distinguishes it from a general flow with vanishing 
horizontal divergence (that is made so by some other means) for arbitrary Rossby 
number. Both, however, are frame indifferent, and, depending on boundary conditions, 
both can also have a velocity field with only two vector components. 

In most flows of engineering interest the flow field is bounded and has no-flux (or 
only mean-flux) boundary conditions. In such situations the MFI flow field will have 
a velocity field with two components, in the sense of Qjuj -O or its statistical 
equivalent, Qj(uju,)+O. Note carefully that this does not mean, in general, that 
52, ( u j  yp,!)  + 0 as it would if the velocity field were independent of the axial coordinate. 
It is this vision of a ‘typical’ flow of engineering interest that underlies this article and 
that will play a role in the choice of an ansatz. It should be clear that an MFI field can, 
in general, have three non-zero vector components and be dependent on three 
coordinate directions. However, an engineering tool is being designed, and in the class 
of boundary conditions which are typical of engineering flows in bounded domains, 
MFI flow is typically accompanied by a vanishing 52. u.. It is for this specialization that 
the representation for the rapid-pressure covariance is constructed; it might well be 
called a ‘2CMFI’ representation, in the sense that vanishing of Oj ui leads to the MFI 
condition. The model has been called, in an earlier incarnation, a ‘2DMFI’ model, in 
acknowledgement of the 2DMFI principle put forward by Speziale (1981, 1985, 1989), 
that suggested this work. 

It should be kept in mind that the application of the MFI principles to obtain the 
geostrophic constraint is to be understood in an asymptotic sense. A turbulence model 
is not expected to compute flows that are MFI on all scales; this is a limitation inherent 
in single-point closures and the assumptions invoked to model the dissipation. Do 
reflect on the fact that the rapid-pressure strain is an integral over the energy spectrum 
of the turbulence: thus if only the first decade or so of scales of the motion are driven 
towards an MFI condition the rapid-pressure integral begins to behave as if that were 
the case. 

J ?  
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5. Additional mathematical requirements 
There are several statistical inequalities and mathematical identities that X must 

satisfy. These principles are used to obtain a set of algebraic constraint equations for 
the A,  and D,. For arbitrary three-dimensional turbulence the tensor polynomials must 
satisfy the symmetry constraints 

Xijkl  = Xii lk? xijkl = Xjik17 Xijk  = x i k j .  (30) 

These symmetry constraints have already been built into the assumed form of the tensor 
polynomials. For arbitrary three-dimensional turbulence the tensor polynomials must 
also satisfy the constraints of normalization and continuity : 

xijkk = ( u i u i ) ,  xikk = xijjk = 0, xiji = 0. 

Note that a contraction of the integral of a two-point statistic is a local one-point 
statistic. The tensors (u, u j )  and (00) (u i  u,) - (Ou,) (Ou,) are positive semi-definite. 
This reflects the fact that the energy of the turbulence is always positive and that the 
magnitude of the correlation coefficients between the various components of the 
tensors are bounded by one. These facts lead to the ‘realizability’ and ‘joint- 
realizability ’ constraints which specify the behaviour of the correlations when specific 
limit states are approached. The relevant portion of the Reynolds stress transport 
equations, in principal axes, requires that 

(D/DC) ( U , U , )  [Up,i+eipk52kRo-’]XiaPa~O as ( U , U , ) + O  (32) 

in order to satisfy realizability. The rate of change, due to the rapid-pressure 
correlation, of the eigenvalue (u,u,) is required to vanish as the limit state is 
approached. This ensures that the rapid-pressure correlation model does not cause the 
solution to go into the unrealizable region in which (u,u,) is negative. This 
realizability limit is rephrased in terms of the determinant of the Reynolds stress: F = 
(R;i-3R,, R;,+2R,3)/6 where R,, = (u,  u i ) / ( u p u p )  which can be written in terms of 
the invariants of the anisotropy tensor as F = 1 +9II+ 27111 where I1 = -fbij b,, = 
- ( b2),  I11 = $hip bpi b,, = f ( b3).  The determinant Fvaries between zero and one ; F = 
1 corresponds to an isotropic turbulence and F = 0 corresponds to the realizable limit 
in which one or more eigenvalues vanish. 

Similar reasoning applied to the mixed tensor involving the Reynolds stress, the heat 
flux and the variance of the temperature fluctuations, produces the ‘joint-realizability ’ 
constraint 

1 

(D/Dt)D,, [ u ~ , ~ + ~ ~ ~ l , . s z ~ R o - 1 1 [ ( 8 e ) x i ~ ~ ~ - ( e u ~ > X ~ ~ p l ~ o  as D , , + 0 7  (33) 

which couples the rapid-pressure correlations appearing in the heat-flux and the 
Reynolds stress equations. A similar determinant function 4 is defined with the 
normalized D,,, for which 0 < I$ < 1. Joint realizability reflects the requirement that 
the magnitude of the correlation coefficients be bounded by one: the Reynolds stress 
and the heat flux take on values ‘jointly’ such that the time rate of change of D,, 
vanishes as D,, goes to zero. 

Note that no assumptions regarding the higher-order derivatives of the eigenvalue 
have been made. The strong form of realizability, in which (D2 /Dt2 )  (u,u,) > 0 is 
required at the realizability limit in order to allow the turbulence to leave the realizable 
state, is not invoked. Such an agency is already present in the slow terms and it is not 
necessary to force the rapid terms to be responsible for such behaviour which, as will 
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be seen, is inconsistent with the small-parameter expansion of the rapid-pressure 
representation around the realizability limit. Instead a weak realizability constraint, as 
specified by Speziale, Abid & Durbin (1 994) as a more general form of Pope’s (1 983) 
constraint, which does not allow the solution to attain the realizable limit in finite time, 
is invoked. This is done by requiring that the rapid-pressure correlation vanish more 
rapidly than the slow-pressure correlation model. This avoids any assumptions 
regarding the behaviour of the second derivative which are required for the flow to 
leave the realizable state which is accessible in finite time in models using the strong 
form of the realizability constraint. Moreover, recent work by Speziale et al. (1994) 
indicates that the present hierarchy of second-order models is inconsistent with the 
strong form of the realizability constraint. The rate of rotation of the eigenvalues 
arising from the second derivative is a sink term that cannot be balanced by the present 
models. In setting the portion of ( D / D t )  (u, u,) due to the rapid-pressure correlation 
to zero while choosing a return-term model that precludes accessibility of the realizable 
limit state, the weak form of realizability is satisfied by the sum of the modelled terms 
on the right-hand side of the transport equations. The issue raised by Speziale et al. 
(1994) does not impact on the present model, as all the higher-order derivatives vanish, 
and the realizable limit is not attainable in finite time because of the relative rate of 
disappearance of the slow-pressure terms with respect to the rapid-pressure terms. It 
may, however, require a rethinking of the modelling principles so that the intrinsic 
negativity of the second derivative can be properly balanced if the realizable limit is to 
be considered accessible. 

It should also be kept in mind that the rapid-pressure covariance can be written as 
an integral of the energy spectrum over all the scales of the motion: from the 
production scales at K /  - 1, and larger, to the dissipation scales KT - 1. The major 
contribution to the integral will be from the large scales of the motion. In turbulence 
with a K - ~ / ~  inertial subrange in which there is enough of a separation of scales for a 
second-order simulation to be useful, say at least Re, - lo4, the ratio between the 
dissipative and the energy-containing lengthscales is T / /  - Re;314 - 1000 and the flow 
scales range over 0 < K/  < 1000. However, approximately 85% of the energy of the 
motion is contained in the first decade K/  < 10: the major contribution to the rapid- 
pressure integral is from the scales of the motion greater than one tenth of the 
production scales. If only the largest 1 % of the flow scales, i.e. from 0 < K /  < 10, 
begins to lose an eigenvalue of the Reynolds stress tensor, through some dynamical or 
kinematical agency, the rapid pressure will begin to approach the geostrophic (or for 
that matter the realizable) limit. The point is that, with any turbulence spectrum with 
a negative exponent, the rapid-pressure covariance can become asymptotically close to 
the frame-invariant limit with only a relatively small portion of the scales of the flow 
being horizontally divergence free. 

6. Obtaining the variable coefficients in the representations 
The application of the five sets of constraints - normalization, continuity, 

realizability, joint realizability and geostrophy - produces thirty-six linear algebraic 
equations (some of which are redundant) for the thirty-three unknown coefficients 
A%, (i = 1,15) and D,, (i = 1,18) appearing in the tensor polynomials. The equations 
are of the general form A..(II, 111) xj = bi where xi = [A,, . . ., AI5, D,, . . ., D,,] and where 
I1 and I11 are the invariants of the anisotropy tensor, defined above. Using the 
definition F = 1 +9II +27III the general form of the equations can be rewritten as 
Agj(II, F )  xj = b,. Note that F and I1 appear linearly in the constraint equations. 
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The ansatz 
x t j k l  = xfjkt +Fxgk,,  

Xijk = Xf jk  + FXG, 
(34) 

(35) 

is used to extract more information from the constraint equations. Here, X o  satisfies 
the set of constraint equations A$j(II, 0) xi” = bi obtained by application of all five sets 
of constraints which are simultaneously valid only when F = 0 (or equivalently when 
I11 = - (I1 +3/3), while the function X F  is obtained from a smaller set of equations 
Aij(1I, F )  xi” = bf which satisfy the three sets of constraints - normalization, continuity 
and joint-realizability - where bf is a known function of the X o  solution. There are 
more unknowns than equations; the extra ‘free parameters’ will be used later to ensure 
that the model is asymptotically consistent with an equilibrium state. The solution, in 
which all free parameters are set to zero, and which satisfy all the mathematical 
constraints, will be called the basic model and has been given previously in Ristorcelli 
(1987, 1991) and Ristorcelli & Lumley (1991b). 

The coefficients that satisfy all of the known mathematical requirements are : 

A, = (1 1111+73)/2711,-F(42011+239)/13511,, 

A ,  = - (6911 + 32)/27II, + F(420II + 257)/27011d, 

A, = (311+4)/31Id-~F/(1 +3II), 

A ,  = (1 511 + 1 1)/311, -i$jF/( 1 + 3II), 

A ,  = -3(1 +311)/3II,+&F/(1+311), 

A ,  = - 2(33II + 20)/311d -#/( 1 + 3II), 

A, = - (5711 + 28)/3II, -&F/(l + 3II), 

A ,  = -(10211+61)/311~, 

A ,  = (4211 + 23)/3II,, 

A,,  = (1 511 + 14)/311, +#’/( 1 + 3II), 

A , ,  = - (10211 + 61)/11,, A,, = -2(33II + 20)/11,, A,, = (4211 + 23)/11d, 

A,, = 0, A,, = 0, 

where 11, = (1 + 311) (7 + 12II), F = 1 + 27111 + 911, I1 = -fbij bij and I11 = $biF bpi bjj. 
The rapid-pressure correlation integral, X p k j ,  appearing in the heat-flux equations, is 
used to derive the Ai through the joint-realizability constraint. The general form of the 
third-order tensor polynomial used to model X p k j ,  which cannot be obtained 
independent of the representation of Xt jk l ,  is included here for completeness : 

D ,  = -(312112+ 14911-21)/5IId-~F/(1 +3II), 

D, = (48112 + I1 - 14)/511, +&F/( 1 + 3II), 

D, = - (32411, + 22211 + 17)/11, -&F/( 1 + 3II), 

D, = -3/(7+ 1211)+$7F/(1+311), 

D, = (4211 + 23)/11,, 

D, = -(10211+6l)/1Id, 

D, = - 2(3II + 4)/5II, -gF/( 1 + 3II), 

D, = 27(2II + 1)/511d, D, = (4211 + 23)/11,, D,, = (4211 + 23)/11,, 

D,,  = -8(39II +22)/5II,, D,, = 2(24II+ 17)/511,, D,, = -27/(1+3II). 

Note that D,,, D,,, D,,, D,,,  DI8 ,  as well as A,,, A, ,  have been set to zero as they are 
not necessary to satisfy the constraints. The coefficients given above will be called the 
coefficients for the basic model, the portion of the model that satisfies all the known 
mathematical constraints, the eternal principles, if you will. To this basic model 
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additional terms, corresponding to the free parameters, are added in order to ensure 
that the model is asymptotically consistent with an experimentally observed equilibrium 
state of a particular turbulent flow field. 

Some tacit assumptions and diverse subtleties are now amplified. The most 
important one relates to the assumed simultaneity of the materially frame indifferent 
state and the loss of an eigenvalue of the Reynolds stresses in the ansatz 

Xijkl  = X:jkl +FLY:,,. 

Note that X o  satisfies, simultaneously, both the geostrophic, sZj ui,j Si, = 0 (more 
accurately Oj uj Si, = 0), and realizability constraints, (D/Dt) (u, u,) + 0 as (u, u,) + 0. 
This means that when F + 0, X does not satisfy the geostrophic constraints even 
though the flow could be MFI : which is to say that sZj u j  = 0 is assumed to be the only 
way the modelled equation can become frame invariant. The frame-invariant condition, 
sZj ui,i Si3 = 0 was not used and it seems that such a constraint cannot be handled by 
this class of single-point closures. This limitation has been recognized by Reynolds 
(1994) and manifests itself as a directional singularity when the turbulence loses two 
eigenvalues, as discussed below. The limitation was recognized earlier when the 
tensorial representation for the rapid pressure was postulated : such a representation 
would not be valid for turbulence with a highly anisotropic two-point correlation. 
Thus, using the ansatz above, MFI cannot be satisfied unless I; = 0, i.e. the eigenvalue 
of the Reynolds stress along the axis of rotation vanishes. The model is in fact a model 
that is only MFI in the two-component limit. This choice has been made with a typical 
engineering flow in mind and limits the model to flows in bounded domains with zero- 
or constant-(in time) flux boundary conditions. This is in acknowledgement of the fact 
that there is no statistically stationary flow with non-zero u, unless it is forced through 
the boundary conditions on u,. The initial-condition problem is a decay problem since 
the energy exchange between (u, us)  and the other components of the energy does not 
occur without the necessary pressure transfer term. 

This suggests using the acronym ‘2CMFI’ to describe this model, in recognition of 
the fact that the components of the fluctuating velocity field along the axis of rotation 
are asymptotically zero, and not because the flow is independent of that coordinate 
direction, which it may or may not be. The model has been called, in the past, a 
‘2DMFI’ model in acknowledgment of Speziales’ constraint (1985, 1989). 

The Ai are nonlinear functions of the invariants of bij: they are ratios of polynomials 
of the invariants. The realizability limit is attained along the line I11 = - (I1 +3 /3  on 
which F = 0. At the isotropic limit I1 = I11 = 0 and F = 1, and thus A , + A ,  = 1/10 
and the well-known exact result for isotropic turbulence is obtained. Note that the ‘off- 
realizability’ correction FXF is necessary to obtain this limit. The satisfaction of the 
isotropic limit is discovered to be a consequence of the constraints used to create the 
2DMFI model - it is not a constraint that has been enforced to obtain the model, but 
is satisfied naturally by the ansatz. 

The choice of which free parameters to set to zero in the basic model is determined 
by the ordering in which the anisotropy of the flow is expressed. The crucial point is 
that it is possible to satisfy all the mathematical constraints with thirteen rather than 
fifteen coefficients for the mechanical rapid-pressure model. Other than that the choice 
is arbitrary; the physics is in the satisfaction of the constraints. 

Note that the coefficients appear to be singular at the one-dimensional limit when 
1 +3II = 0. The singularity is not a 1/0 singularity which results in computational 
difficulties; the singularities appearing in the individual terms in the rapid-pressure 
representation cancel each other when summed. The singularity is a directional 
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singularity as was discovered by Reynolds (1994). This stems from the fact that the 
parameterization of the energy spectrum in terms of the anisotropy tensor results in a 
rapid-pressure representation that cannot distinguish between turbulence with a 
vanishing eigenvalue and turbulence that is perfectly correlated in the direction of that 
eigenvalue (now no longer zero). This is to be expected when parameterizing the 
volume integral of a two-point statistic in terms of the local values of one-point 
statistics. It does not invalidate the method - it simply means that the method is not 
applicable to flows with strongly anisotropic coherences (or, equivalently, very large 
integral scales in a particular direction). The manifestation of this shortcoming is the 
fact that the expressions for the rapid-pressure covariance, when the flow loses two 
eigenvalues, depends on the relative rates at which the two eigenvalues are lost. This 
is a very interesting theoretical point and suggests the types of flows for which this class 
of models is unsuitable. From a practical viewpoint, for the class of flows for which 
such tensor polynomial representations are suitable the point is moot: one does not 
expect to compute a flow whose physics is inconsistent with the assumptions made to 
create the equations to represent the flow. A flow with strongly anisotropic coherences 
does not appear to be a flow for which the single-point closures, as they are presently 
understood, appears to be suitable. 

It should be emphasized that the form of the rapid-pressure covariance was chosen 
so that the variable coefficients are valid for all states of the turbulence - they are not 
fixed to constant values which are only valid at some asymptotic state. It is this fact 
that distinguishes this representation from others at this time : the coefficients are 
functions of the state of the turbulence obtained by application of the mathematically 
known limit states. Furthermore, the limiting states of the turbulence are not used to 
set the coefficients or to calibrate the model: they are used to ensure that the variable 
coefficients are consistent with, not set by, the extreme states of the turbulence. The 
resulting model coefficients, therefore, satisfy all mathematical constraints for any 
arbitrary Reynolds stress - not just at the realizability or geostrophic limit states. The 
second term, FXF, in the expression for X, represents the ' off-realizability correction '. 
Therefore, the coefficients, Ai and Di, are functions dependent on the state of the 
turbulence as parameterized by the invariants and only attain their realizable limit 
values at F = 0. 

7. A compact representation of the 2DMFI rapid-pressure model 

the Reynolds stress equations, with 
The rapid-pressure correlation models are usually written in the form they appear in 

I?: = 2[ uq,p + cpqk 52, Ro-'] xpiq, 
nLj = 2[uq,p + € p q k  Qk Ro-'l LXipqj + x jpqi l ,  

(36) 

(37) 

which can be rewritten in terms of the strain and rotation tensors as 

where sqp = a(uq,, + Up,,> and W,, = a( U,,p - Up,,) + cpqk Q, Ro-' are the usual mean 
strain rate and the total or intrinsic rotation rate. The second-order equations are then 
rewritten as 

(D/Dt) (uiuj) +2cikp  ( ~ , U ~ ) S ~ R O - ' + ~ ~ ~ ~ ~ ( U ~ U ~ ) S ~ ,  Ro-' = +171j+17&+ ..., 
(D/Dt )  ( h i )  + 2epik Q, ( 8uP) Ro-l = + I?: + I7: + . . . , 
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where the terms omitted have already been given. Taking the contraction of the fourth- 
order tensor on the mean velocity gradients, to obtain the form used in the Reynolds 
stress equations, produces, with q2 = ( u p  u p ) ,  

qi/2q2 = 2[A, +A,]  sij 

+ [ (A,  + A ,  + 24,) (bi ,  SPj  + bj ,  SPi )  + 2 4  Sti ( b S ) ]  

+ [ (A,  - A J  (btp W p j  + bjp WpJI 

+[ (A,+A7+2A8)(b: ,S , j+b~,S , , )+2A8Si j  ( b 2 S ) ]  

+ - (b:p Wpj + ';p Wpi>l 

+2[(A,+Alo)bi,S,qb*i+Alobij (bS)1 

+[(A11 +A12+2A13) (bipSpqbij+bjp Spqbi i )+2A13(b: j  ( b S )  +bij (b2S))I 

+ [(All - 4 2 )  (4,  w,, bij + bj, w,, b 3 l .  

Here the angle brackets represent the trace of the indicated quantity: e.g. ( b S )  = 
b, Sij and I1 = -f ( b 2 ) ,  I11 = + ( b 3 ) .  Note that the qj has zero trace because of the 
continuity constraint, Xiiik = 0, requires A ,  + A ,  + 5A, - I1 (All + A , ,  + 44,) = 0 and 

It is possible to rewrite the higher-order tensor bases in terms of the lower-order 
terms, substantially simplifying the form of the model. The generalized Cayley- 
Hamilton theorem (Rivlin 1955) is used to rewrite the expression in an irreducible 
tensor basis (see Appendix C). Using the matrix notation 

A,+A7+5A,+A,+A,, = 0. 

bSb = - [b2S + S b 2 ]  + ( b S )  b + f ( b 2 )  S + ( b2S)  I, 

bSb2 + b2Sb = -$ ( b 3 )  S + ( b 2 S )  b + ( b S )  b2 

the 2DMFI rapid-pressure correlation can be written more compactly as 

qi /2q2 = [B, + ( b 2 )  Bi + ( b 3 )  By] S, 

+ B,[bi, S,j + bj, S,i - $ ( b S )  Sij]  + BY ( b S )  [b:j + 211/3Sij] 

+ B,[bi, WPj + bj,  W,,] + [B, ( b S )  + B&" ( b 2 S ) ]  b,  

+B7[b~pS , j+b;pS , i -$ (b2S)  Sij]  

+ B8[b?p W p ~  + b;p Wpil + B,[bip T p  b i j  + b j p  4, b $ 1 2  (38) 

where the values of the Bi in terms of the At are given in Appendix A. The above 
representation of the rapid-pressure correlation will be called the basic or uncalibrated 
model. The coefficients, Bi, appearing in the base 2DMFI model above come from first 
principles : they do not result from any numerical optimization with experimental or 
numerical data. Comparisons to the FLT model (Fu et al. 1987) shows that the two 
models have the same tensor structure containing the same generators. The only 
difference is that the terms proportional to [bij] and [b:i + 211/3Sij], usually identified 
with the slow-pressure's contribution to the pressure-strain correlation and calibrated 
accordingly, now reflect a contribution from the rapid pressure. Contraction of the 
irreducible form of Xijkl on the mean velocity gradients has produced the bases [b,?] and 
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[bfj + 211/3Sij] in which the coefficients are functions of the invariants ( b S )  and ( b 2 S )  
in addition to the dependence on ( b 2 )  and ( b 3 )  appearing in the Ai. The two tensor 
bases, usually associated with the slow-pressure correlation, arise as a consequence of 
starting with the two-point volume integral and represent a contribution to the 
pressure-strain correlation whose structure is identical to the slow-pressure models but 
whose genesis is in the rapid pressure. 

Speziale et al. (1991) have written a general form for the pressure-strain covariance. 
It is linear in the mean velocity gradients and nonlinear in the anisotropy tensor. Their 
general expression contains the same generators as the present model except for the 
cubic term [bWb2-b2Wb]. Speziale et al. (1991) have used the results from rational 
mechanics (cf. Smith 1971) to expand in a functional basis; here a polynomial basis has 
been used and in a polynomial representation the generator [bWb2-b2Wb] is not 
redundant (Spencer 1971). The tensor polynomial given above is irreducible and the 
basis is optimal. Speziale et al. (1991) have specialized the general expression to the case 
of planar flow: they have shown that the generators nonlinear in the anisotropy tensor 
can be expressed in terms linear in the anisotropy tensor. This fact led to the very 
simple form of the SSG model (Speziale et al. 1991), and also, from a rigorous though 
not necessarily practical point of view, limits the model to planar flows. The results of 
Speziale et al. (1991) can also be used to recast the present model into its linear planar 
form. For planar flows Speziale et al. (1991) have shown that 

[ b ~ p S p j + b ~ p S p i - $ ( b 2 S )  Sij] = -b3 , [b ipSPj+bjpSpi -$(bS)  Sij]-$(111/b33) Sip 

[bfp w p j  + bj”, W p J  = -b,,[bip w p j  + bjp wpil, 

from which it follows that 

[ b i p  W , p  bij + bjp W , p  bit1 = (11 + b33 b33) [bip w p j  + bjp wpil 

and the planar form of the 2DMFI rapid-pressure model can be written as 

q j /2q2  = (C, - 2IICi + 3IIICr -$(III/b33) C7) Sij 

+ (C, - b33 C7) [hip S p j  + bjp s p i  -$(bS)  Sijl 

+ C; ( b S )  [bfj + 211/3Sij] 

+ (C, - b33 C, + (11 + b33 b33) CJ [bip w p j  + bjp wpi l  

+(C, ( b S )  + C; ( b 2 S ) )  b,, (39) 

which has the same linear tensor bases as the SSG model, in which the slow-pressure 
covariance is included : 

qj = - ( 2 C , ~ + C ; F ~ ) b i j + C 2 ~ [ b ~ j + 2 I I / 3 S i j ] + ( C 3 - ( - 2 I I ) 1 ‘ 2 C ~ ) k S i j  

+ C, k[bip spj + bjp Spi -$(bS)  4 j ]  + C, k[bip Wpj + bjp wPJ. (40) 
In the planar flow limit the form of the two models is the same. This is to be expected 
as both derivations begin with the topologically generic form of a general class of 
models linear in the mean flow gradients and satisfying form invariance under 
coordinate transformation; the SSG model is a specialization of this form to planar 
flows. There are some additional differences worth noting. The coefficients in the basic 
form of the 2DMFI model are nonlinear functions of the invariants while in the SSG 
model the coefficients are, except for the Sij term, constants. The constants in the SSG 
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model come from calibration to several equilibrium flows and may be viewed as the 
zeroth-order term in a Taylor series expansion of the variable coefficients. The Ci in the 
S S G  model are determined by a numerical optimization so that the model reproduces 
as closely as possible: (i) the stationary state of the homogeneous shear and (ii) 
maximizes the kinetic energy growth rate of the rotating homogeneous shear to as close 
as possible to the Q / S  = 0.25 predicted by rapid distortion theory without introducing 
a Richardson number similarity (Speziale & Mhuiris 1989a), while ensuring that the 
points of exchange of stability are outside those predicted by the linear theory of 
Bertoglio (1982). Issues regarding constant-coefficient models are discussed in more 
detail in 9 10. 

In the return term of the SSG model the correction to the linear b,, term arrived at 
more or less intuitively by Speziale et al. (1991) is, to lowest order, vindicated by the 
present results. Speziale et al. (1991) have altered the term linear in b,, usually 
associated with the slow-pressure correlation, to include a term involving the mean 
flow, a term proportional to the production 9 = - (ui u,) Ui,,: the usual 

The present analysis indicates that the portion of the rapid-pressure contribution to the 
pressure-strain correlation, linear in b,,, has the form [B, ( b S )  +BY (b2S)]  b,. 
Note that ( b S )  can be written in terms of the production as ( b S )  = -9 /q2 .  The 
present analysis suggests the possibility of adjusting the nonlinear return term for 
mean velocity gradient effects in a similar way. In the present model the portion of the 
rapid-pressure quadratic in the anisotropy tensor is BT ( b S )  [bi, + 211/3Si,] and 
therefore also scales with the production. Speziale, Gatski & Sarkar (1992) have 
reflected on the ambiguity of the distinction between the rapid- and slow-pressure 
contributions to the pressure-strain correlation. They have modelled the whole 
pressure-strain correlation, but whether to interpret their adjustments (as described in 
the previous paragraph) as incorporating the effects of the mean strain on the return 
terms or as contributions of the rapid pressure to the total pressure-strain is not clear. 
Here, however, the distinction is clear. The present analysis starts from the tensor 
polynomial representation for the rapid-pressure integral and produces terms whose 
tensor structure is identical to that for terms which are traditionally called the slow 
pressure. The other nonlinear pressure-strain models, FLT or the SL model (Shih & 
Lumley 1985), do not have terms in b, or b!, that can be similarly identified. 

The derivation of a rapid-pressure covariance representation consistent with the 
extreme states and valid away from these limit states, though mathematically rigorous, 
will not necessarily produce a model that performs better than other models in flows 
for which latter models are calibrated. However, for the general class of flows for which 
second-order models are suitable we are of the opinion that the satisfaction of all 
mathematical constraints constitutes a necessary (though not sufficient) requirement to 
ensure the predictive capabilities in flows different from those for which the models are 
calibrated. The existence of several free parameters can then be used to calibrate the 
model to specific classes of flows of computational interest. This tack is taken in the 
next section where the fixed points of the modelled equation are matched to the fixed 
points of the homogeneous shear. In this way a model for the class of flows in which 
the mean shear is the dominant production mechanism is created. 
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8. Calibrating the rapid-pressure covariance representation 
The coefficients, Bi, appearing in the 2DMFI model come from first principles: they 

do not result from any calibration with experimental or numerical data. They represent 
the minimum number of determined coefficients necessary to satisfy all the 
mathematical constraints on the rapid-pressure correlation for an arbitrary Reynolds 
stress. It is not, however, a unique representation: there are an infinity of solutions 
corresponding to different values of the free parameters which, in the basic model 
representation shown above, have been set to zero. Computations have shown that the 
predictive capabilities of the basic model are inadequate. The mathematics built into 
the model do not capture the experimentally known ‘stationary points’ of 
homogeneous shear. To compensate for some of the approximations made in the 
mathematical development the model is modified so that the modelled evolution 
equations have the same asymptotic behaviour as that observed in nature. Additional 
terms are added to the basic model to ensure that it is consistent with an equilibrium 
state of a particular benchmark turbulent field, homogeneous shear. This is done 
without sacrificing any of the mathematical principles built into the model. However, 
it cannot be done arbitrarily. 

The strategy is to require asymptotic consistency with an equilibrium state. There is 
some reason to believe that the assumption of an equilibrium fixed-point behaviour is 
a suitable approximation for turbulent flows of the sort for which this modelling 
procedure is useful. Experiments in homogeneous shear flow show that the structural 
equilibrium point, (D/Dt)bij = 0 is a weak function of 9 / c  and also the initial 
conditions. Here it is assumed that fixed-point behaviour is an adequate approximation 
for use in calibration for engineering computations. Thus the modelled evolution 
equations are required to have the same fixed points as those observed in experiment. 
The equilibrium constraint is used to obtain additional constraints equations to specify 
the free parameters. This is very similar to the strategy employed so far in that limit 
states are used to set model coefficients. Here, of course, the ‘equilibrium’ state is much 
closer to those expected to be seen in flows of engineering interest. The free parameters 
will now be called calibration coefficients, A:, and will be collectively denoted by X& 
appearing in the decomposition 

(41) 
X &  represents the additional constant terms necessary to capture the stationary state. 
This form is equivalent to assuming that the coefficients in the tensor polynomial have 
the form Ai = A: + FA: +FA:. The A: satisfy normalization and continuity constraints 
and the algebraic equations for the fixed point of the homogeneous shear. It is at this 
point that numerical or experimental data for the asymptotic values of the anisotropy 
tenor, the production to dissipation, ( 9 ’ / ~ ) ~ ,  and the ratio of timescales, (Sk/c) , ,  are 
necessary. The details of this strategy are now given. 

The A: satisfy the six equations given by the homogeneous form of normalization 
and continuity constraints, X &  = 0, X &  = 0, which are valid for all states of the 
turbulence. Substituting in the calibration coefficients allows six A: to be expressed in 
terms of seven free parameters: 

Xijkz  = X &  + FX&, + FX&. 

A: = -(50Ag+ 12A~+4A~,)II/15+(A~,+A~,-6A1,)III/5, 
A; = (20Ag+ 3AC,+AE0)II/15-(3A~1 +3A~,+2A13)III/10, 
AC= _ _  
A: = -~(11Ag+3AC,+A~,), 

+ (A:,  + 3A:, + 8At3) 11/3, A: = --$A; + 2(Ay, + 2A$J 11/3, 

A: = -$(2Ag+At,). 
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The seven parameters will be determined by requiring asymptotic consistency with a 
particular equilibrium state. At this point the rapid-pressure correlation model is fully 
general and it is possible to write it in its final form, without specifying the calibration 
coefficients, as 

Iqi/292 = [C, - 211c; + 3IIICj”l sij 
+ C4[bi, S,j + bj, S,i -: ( b S )  8 4  + C&ll ( b S )  [b:i + 211/3Sij] 

+C,[bi, Wpj+bjp W,,]+[C,(bS)+C&ll (b2S)]bi j  

+ C,[b;, Spi + bi”, S,i -: ( b 2 S )  Sij] 

+ C,[b;, W, + b;, W,,] + C,[bi, W,, bii + bi, W,, bii]. (42) 

The calibration coefficients, A:, are added to the base model coefficients, Bi, of the 
previous section, to obtain the final model coefficients Ci:  

C, = B, - 2F( 10Ag + 3Ag + A;,) I I / 5  -F(A;,  + A;z + 14Af,) 111/5, 

c; = B; + F(Ai +A?,),  c;ll = By -fF(A;, + A;, + 2A;,), 

c, = B, + F( - &4g + f I I (  - A;,  + 3 4 ,  + 4A?,)), 

c, = B8-+F(7Ag+3A;-A;,), c, = B,+F(A;,-A;,) .  

C4 = B, + F( - 3Ag + II(A;, + A;,  + 4A:,)), C y  = B&” + F(A?, + Atz  + 4A;,), 

C, = B, + F(2A: + 4A;,), C, = B, - 3F(Ag + A ;  + A;,), 

Note that the traces can be written in terms of the production ( b S )  = - 9 / q 2  and 
( b 2 S )  = ~b , ,P /g2;  in planar flow ( b S )  = -2b,,S and ( b 2 S )  = -b,,b3,9/g2. 

The calibration coefficient A: involves adjustments to the generators 

[ b S + S b - $ ( b S ) / l  and [bW-Wb] 

which are linear in the anisotropy tensor. Numerical experiments have indicated that 
it is important in establishing the levels of the normal components of the Reynolds 
stresses. Combinations of A:, A; and AEo affect the generators quadratic in the 
anisotropy tensor, [b2S + b2S - T ( b2S)  /l and [b2W- Wb2] and to a very small degree 
the S-term. Combinations of only A: and A;,  can be used to control the contribution 
to 17‘ proportional to b and S. Experience with the FLT model (Fu et al. 1987) 
indicates that the cubic term [bWb2-b2Wb] involving the rotation tensor is 
important in controlling the relative level of the normal components of the Reynolds 
stress in situations with rotation. This suggests that the calibration coefficients A;,,  A;z 
and At3 are important. The combination of calibration coefficients A;, and A;,  controls 
tensor products like [bWb2-b2Wb] and combination of terms A;,,  A:,  and At3 
control the contributions of b2 and S. 

The existence of the free parameters allows the model to be calibrated to a specific 
class of flows of computational interest. For example, in a buoyant flow one might 
evaluate the fixed points using experiments on homogeneous shear in a constant mean 
temperature gradient, thus producing a model suitable for a class of stratified flows of 
geophysical interest. This calibration would, of course, involve the model for the rapid- 
pressure correlation appearing in the heat-flux equation. For many engineering 
problems the primary production mechanism is the mean shear and capturing the fixed 
points of the homogeneous shear in the modelled equations will make the model 
suitable for a wide class of flows. At this point one could also consider using the exact 
results of rapid-distortion theory to obtain values for the calibration coefficients. This, 
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TC CHC TK(A) TK(C) TK(D) TK(G) TK(J) TK(K) DNS 

b;", 0.197 0.137 0.217 0.257 0.197 0.157 0.157 0.147 0.215 
b;", -0.14 -0.165 -0.165 -0.165 -0.17 -0.148 -0.154 -0.149 -0.158 
bE -0,143 -0.083 -0.133 -0.143 -0.133 -0.113 -0.103 -0.093 -0.153 
b z  -0.053 -0.053 -0.083 -0.113 -0.063 -0.043 -0.053 -0.053 -0.062 
(Y/CL 1.75 1.0 1.38 1.37 1.64 1.33 1.45 1.37 1.80 
(SKI€) ,  6.25 3.03 4.2 4.15 4.82 4.5 4.71 4.60 5.7 

TABLE 1. Data for homogeneous shear flow from Tavoularis & Corrsin (1981) (TC), Champagne 
et al. (1970) (CHC), Tavoularis & Karnik (1989) (TK) and DNS data of Rogers et al. (1986). 

however, is inconsistent with the equilibrium hypothesis underlying the local 
approximation to the constitutive relation invoked for the rapid-pressure correlation 
integral. Furthermore the modelled dissipation equation assumes that the small scales 
are parameterizable by the large scales, acting to dissipate turbulent kinetic energy at 
a rate set of the flux from the large scales. The rapid problem distorts the small scales 
of the motion causing them to evolve dynamically in a way that is no longer set by the 
spectral cascade and they are no longer parameterizable by the large scales of the 
motion. It is this apparent limitation of the current class of modelled dissipation 
equations that underlies the choice not to use RDT to calibrate the representation. The 
structural equilibrium homogeneous shear will be used to fix the representation for the 
rapid-pressure correlation. 

The fixed points of the homogeneous shear are now built into the model by 
specifying the calibration coefficients. The modelled evolution equations for the 
Reynolds stresses in a homogeneous turbulence with a mean velocity gradient, 

(D/Df)(UiUj) = -2ei,p (UpUj)9k-2ejjkp (upui)9k-(uiup) uj,p-('jup) ui,p 

+ Hij - C, ebii + C, t.[b:j + 211/36ij] - 2/3dij ,  (43) 

assuming local isotropy for the dissipation. The terms - C, eb,, + C, e[b:j + 211/36,,] 
represent the return-to-isotropy pressure correlation. Using (ui  u j )  = q2(bi, + 1/36,J 
the equations for the anisotropy are 

(D/Dt) bij = - 2eikp b p j 9 ,  -2ejjkp bpi 9, - [bi, Ui,p + bip Ui,p - 2/36,, ( b S ) ]  - 2/3Sij 

+ 2b,, ( b S )  + &/q2 - (C, - 2) bij e /q2  + C,[bt + 2II/36iJ e / q 2 .  (44) 

The mean strain and rotation tensors are 

S.. 23 = $3*(6i16j2+6i,6,1) and K, = fW*(6i16i2-6,,6j,), 

where, S = U,,, = S* = W*. Setting the (D/Dt) b,, = 0 produces three algebraic 
equations. Inserting the experimentally determined asymptotic values of b,, and Sk/e 
produces three additional constraints leaving four of the seven A; as free parameters. 
The data from the experiments of Tavoularis & Corrsin (198 l) ,  Champagne, Harris & 
Corrsin (1970), Tavoularis & Karnik (1989), and the DNS of Rogers, Moin & 
Reynolds (1986) are summarized in table 1 .  

There is considerable scatter in the data due to the techniques used to generate the 
turbulence, individual wind tunnels in which the different experiments were done, and 
experimental error. Not all the data, as has been qualified in the references from which 
the data is drawn, represent the asymptotic state. The following fixed-point values are 
taken to be representative: b; = 0.203, b,", = -0.156, b z  = -0.143, bg = -0.06, 
( S k / e ) ,  = 5.54, ( 9 / e ) ,  = 1.73. They are obtained by a simple average of the data of 
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Tavoularis & Corrsin, Tavoularis & Karnik and Rogers et al. These three cases are 
chosen because they have the highest values of the non-dimensional time (SKI€),, 
corresponding to flows that are furthest in their development to the asymptotic state. 
The values of the invariants corresponding to these values of the anisotropy tensor are: 
11, = -O.O58,III, = 0.0032, F, = 0.574. Substituting these asymptotic values into the 
fixed-point equations, (D/Dt) biq = 0, reduces the number of free parameters from 
seven to four: 

A: = -0.29 + 0.06(A:, - A",, 
A;, = -3.6+5A;,-2A;,- 12.7Ag-3.8A;, 
A:, = -24.5 -44.8A;,-2A;, +28.7Ag -8.654:. 

This set of constraint equations is dependent on the model for the return-to-isotropy 
pressure but not the dissipation equation. In Appendix B a set of equations is given so 
that the modelling can be done for any return term. For simplicity the nonlinear return 
coefficient has been set to zero, C, = 0, and the well-accepted value, C y  = 3.4, has been 
chosen. There are still four free parameters, for which the following values are chosen : 
A: = 0.6, A: = - 0.6, A;, = - 0.15, A:, = 0. The undetermined free parameters have 
been set by matching the values of the anisotropy for the log layer. The procedure is 
outlined in more detail in Appendices A and B. 

9. Computations and comparisons for homogeneous turbulence 
The 2DMFI model falls into the same class of representations as the FLT (Fu et al. 

1987) and SL (Shih & Lumley 1985) models: they all use nonlinear terms and invoke 
some form of realizability constraint to evaluate the coefficients. For this reason the 
2DMFI model will be compared primarily to the nonlinear SL and FLT models. For 
completeness and because it appears to be a very successful model for planar flows, 
computations with the quasi-linear SSG model (Speziale et al. 1991) are also shown. 
The SSG model is linear in the anisotropy tensor though nonlinear in that the scalar 
coefficients are functions of the invariants of the anisotropy tensor. It should, however, 
be kept in mind that the SSG model satisfies realizability for the kinetic energy and not 
for the individual Reynolds stresses and is therefore in another class of models. This 
issue is more fully explored in $10. Results are not compared to the LRR model 
(Launder, Reece & Rodi 1975) as, in concordance with the observations of Speziale et 
al. (1991), the SSG model is viewed as an updated optimized LRR model. Detailed 
forms of these models are given in Appendix D. 

In all the calculations with the 2DMFI model a simple linear Rotta-type model for 
the slow-pressure correlation will be used. This corresponds to C, = 0 in the canonical 
form given above and is consistent with the present calibration to the homogeneous 
shear. For the linear return coefficient a simple expression, C, = 2-3111F1/2, is used. 
This satisfies the isotropic limit, C, = 2.0, and is consistent with the assumed value for 
the asymptotic homogeneous shear, Cp = 3.4. The form chosen is consistent with the 
weak form of realizability of Speziale et al. (1994) which requires that the rapid- 
pressure correlation vanish more rapidly than the return pressure correlation as the 
realizability limit is approached. The dissipation equation used is 

The values used for the constants are: C,, = 1.44, C,, = 1.83. Note that this 
corresponds to a single universal fixed point ( P / c ) ,  = 1.88 independent of rotation. 
This single fixed point is a well-known deficiency common to all the present forms of 
the modelled dissipation equation. 

(D/Dt) 6 = -(C,, (ui u j )  Ui,j + C,, C) E/k. (45) 
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FIGURE 1. Evolution of the kinetic energy in homogeneous shear. The experiments of Bardina et al. 
(1983) (symbols) are compared to the four different models: -, 2DMFI; ---, SL; -----, FLT; 
and ---, SSG. 

Equilibrium 2DMFI 
values model 

b z  0.209 
b;", -0.155 
b2"2 -0.148 
b: -0.061 
(9/4, 1.88 
(SK/S) ,  6.08 

SL 
model 

0.202 
- 0.080 
-0.195 

0.007 
3.42 

21.35 

FLT 
model 

0.208 
-0.146 
-0.144 
-0.064 

1.99 
6.84 

SSG 
model 

0.219 
-0.164 
-0.146 
-0.073 

1.88 
5.76 

Experimental 
data 

0.203 
-0.156 
-0.143 
-0.06 

1.73 
5.54 

TABLE 2. Comparison of the model predictions for the equilibrium values in homogeneous shear 
flow ( 9 / c  = 1.88) with an average of the experimental data. 

Case 1. Homogeneous shear 
The calibrated model is now used to compute the time evolution of homogeneous 

shear flow. The mean strain and rotation tensors are S,  = $S* (ai, 6j,+6i,6j,) and 
yj = $W*(ai, Sj, -ai, a,,), where S = U,,, = S* = W*. In figure 1 the time evolution of 
the turbulence energy is compared to the LES of Bardina, Ferziger & Reynolds (1983), 
and the three models FLT, SL and SSG. A similar monotonic behaviour is found for 
other statistics, b,,, bll, I1 in the flow and, as they do not constitute new or different 
information, are not shown. In general, starting from physically realistic initial 
conditions, the flow attains its asymptotic state rapidly and monotonically. The 
asymptotic states which the different models predict are given in table 2. The column 
labelled experimental data is an average of the three cases TC, DNS and TK(D). Note 
that the different (P/e), attained are functions of the different C,, and C,, used in 
the models. The present form of the dissipation equation ensures that the quantity 
( P / e ) ,  = 1.88 regardless of initial conditions for all S k / c  This is a shortcoming of the 
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Equilibrium 2DMFI 
values model 

b,", 0.176 
bE -0.144 
b z  -0.136 
b; -0.039 
(914, 1 .o 
( W E ) ,  3.46 

SL 
model 

0.079 
-0.116 
-0.082 

0.003 
1 .o 
4.30 

FLT 
model 

0.141 
-0.162 
- 0.099 
-0.042 

1 .o 
3.09 

SSG 
model 

0.201 
-0.160 
-0.127 
-0.074 

1 .o 
3.12 

DNS Experimental 
data data 

0.180 0.22 
-0.134 -0.16 
-0.140 -0.143 
-0.040 -0.06 

1 .o 1 .o 
3.73 3.1 

TABLE 3. Comparison of the model predictions for the equilibrium values in the log-layer of turbulent 
channel flow (PIE = 1) with the DNS data of Kim (1993, personal communication) and the data of 
Laufer (1951) given in Abid & Speziale (1993). 

modelled dissipation equation and shows up in a larger b,, than for the flow for which 
the rapid-pressure representation was calibrated using ( P / C ) ~  = 1.73. Recall that the 
calibration of the model was done using stationary flows and as such the calibration 
is independent of the dissipation equation model. The slower evolution of the kinetic 
energy also reflects the larger source term for the dissipation in the dissipation 
equation. 

Case 2. The equilibrium wall layer 
Another simple but important test case is whether the model can capture the 

stationary state of the log-layer in channel flow. Homogeneous shear and the log-layer 
are similar in that they achieve, to a suitable approximation, an equilibrium state. Note 
that the dissipation equation is not used to compute this flow as P = c. Abid & Speziale 
(1993) have discussed the relevance of this test case and noted the inability of most 
rapid-pressure closures to perform successfully in the log-layer. The results are in 
agreement with their contention that a model which is asymptotically consistent with 
the stationary states of the homogeneous shear will also do well in the log-layer. The 
models are compared to the channel flow DNS of J. Kim (1993, personal 
communication) which is an update of the simulations reported in Kim, Moin & Moser 
(1987), table 3. The data presented represent an average of the values of the anisotropy 
in the region 70 < y+ < 100 outside the viscous sublayer. 

Case 3. Homogeneous shear with rotation 
The present test case, homogeneous shear with rotation, and the next test case, 

homogeneous shear with streamline curvature, are important. In both, additional 
forces, which stabilize or destabilize the flow, are present. These effects appear in the 
evolution equations as additional production mechanisms for the Reynolds stresses. In 
the case of rotation the production terms in the evolution equation for the turbulence 
kinetic energy do not directly depend on the rotation: the turbulence energy 
production depends on the rotation only through the off-diagonal components of the 
Reynolds stress. On the other hand, in the case of streamline curvature the production 
terms in the evolution equation of the turbulence kinetic energy do directly depend on 
the curvature. These two cases are important test cases not only because the models 
have not been calibrated for them but also because the model will have to predict both 
the stabilization and destabilization of the turbulence and the critical values of the 
governing parameters which demarcate the regions of flow stabilization from flow 
destabilization. 

For flows in the rotating coordinate system the Coriolis terms must be carried and 
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Kj appearing in 171j must be replaced by the total rotation tensor K j  + cjik Q,. Thus 
in the rapid-pressure model W* = S( 1 - 2Q/S). 

Figure 2(b-e) shows how the models perform in rotating shear for rotation to shear 
ratios Q / S  = 0, +, + compared to the LES data of Bardina et al. (1983) in figure 2(a). 
In general, all the models are able to capture both flow destabilization for some 
A < Q / S <  B and flow stabilization for some A > Q / S >  B. The points A and B 
represent the points of neutral stability on a bifurcation diagram in the phase plane 
(E/Sk), and ( Q / S ) , .  All of the models have a bifurcation diagram of the same general 
form (Speziale & Mhuiris 1989b), indicating a stabilization of the flow outside some 
region of approximate size 0 < Q / S  < 0.5, predicted by the linear rapid-distortion 
theory of Bertoglio (1982). The most important facts concerning the different models 
for the homogeneous rotating shear can be summarized by indicating the unstable 
regions in which the models predict a non-trivial equilibrium (c /Sk) ,  : 

SSG: -0.09 < Q / S  < 0.53, 

RDT: 0.00 < Q / S  < 0.50, 

2DMFI: 

SL: 

FLT: 

-0.070 < Q / S  < 0.502, 

-0.14 < Q / S  < 0.40, 

- 0.1 1 < Q / S  < 0.39. 

Near the point of linear neutral stability Q / S  = 1/2 both the SL and the FLT models 
predict a premature restabilization at values of Q / S  20% and 22% lower than 
predicted by the linear theory. The 2DMFI model is within 4 YO of the linear prediction. 

None of the models tested, linear or nonlinear, captures the point of maximum 
kinetic energy growth at (Q/S),,, = 0.25. To do so would mean that the equations 
would exhibit a Richardson number similarity which, as Speziale & Mhuiris (1989~) 
have shown, is not admitted by the Navier-Stokes equations. The two models that 
come closest to (Q/S) , , ,  = 0.25 are SSG at Q / S  = 0.22, which was calibrated using 
this fact, and 2DMFI at Q / S  = 0.2 which was not calibrated using any rotating flows. 
The current modelled dissipation equations predict a (P/E), = - 2b,, Sk/e = 
(Cez - l)/(Cel - 1) = const., where the constant is model dependent but independent of 
rotation rate. The constant attains the value for equilibrium homogeneous shear for 
arbitrary rotation rate, a fact which is not consistent with observation. In a flow that 
is stabilized by rotation, say Q / S  = 1, production must be less than dissipation for the 
equilibrium state to be reached. The dissipation equation cannot be used for 
calibration in rotating flows without compromising the model when a dissipation 
equation capable of predicting the stationary values of ( P / E ) ~  = f ( Q / S )  becomes 
available. 

Case 4. Homogeneous shear with curvature 
For homogeneous shear with streamline curvature the mean strain and rotation 

tensors are Sij = fS*(S,, Sj, + Si, Sj,) and Kj = iW*(Si, Sj, - Si, Sj,) where S* = 
S( 1 - Y )  and W* = S(1+ Y )  where Y = (U,/R,)/S is the stability parameter. The 
geometry for the curved homogeneous shear follows that of Holloway & Tavoularis 
(1992): R, is the radius of curvature of the flow, U, is the axial velocity at the centreline 
and the cross-stream gradient of the axial velocity is the shear U,,, = S.  The kinetic 
energy growth rate is suppressed, relative to homogeneous shear, for Y > 0 
and increased for Y < 0, while for Y > 0.05 the experimental data indicate a 
relaminarization. 
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FIGURE 2. Evolution of the kinetic energy in homogeneous shear with rotation for (a)  Bardina et al. 
(1981), (b) 2DMF1, (c) SL, (d) FLT, and (e) SSG. In 0, -, Q / S  = 0 ;  0, ---, 0.25; A, 
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FIGURE 4. Bifurcation diagram for homogeneous shear with curvature for the four different 
models: -, 2DMFI; ---, SSG; ---, SL, -----, FLT. 

Figure 3 compares the model results to the experimental data for b,, versus 9. The 
plot has been generated by computing the flow from the beginning of the straight 
section of the wind tunnel to St = 10 which corresponds to the end of the curved 
section. The initial conditions on the second-order moments are given by the 
experimental data. The initial condition on the dissipation rate is determined by 
matching to the kinetic energy growth rate at the beginning of the straight section. 

The different models all capture the trend in the stabilization/destabilization with 
respect to the stability parameter. The primary difference in the predictions of the 
different models seems related to their ability to capture the homogeneous shear at 
Y = 0. The results of the different models would be in more agreement for negative and 
small positive values of Y if they predicted the same results for homogeneous shear. 

The bifurcation diagram for the second-order models, in figure 4, was generated by 
letting the solution procedure go to its asymptotic state. There is a critical value, z, 
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at which the stabilizing effects of curvature begins to causes a negative kinetic energy 
growth rate, which ultimately relaminarizes the flow. The critical values predicted by 

H&T:  % =  0.05, the different models, are 

2DMFI: .4", = 0.072, 
FLT: % = 0.075, 
SSG: $=O.lO, 

SL: 8 = 0.105, 
where H & T is from the experimental data of Holloway & Tavoularis (1992). There 
is a consistent trend for the SSG, 2DMFI and FLT models, when compared to the 
critical values for the rotating shear: the higher (Q/s>, for stabilization of the flow 
correspond to higher %. The SL model has small but non-zero c/Sk over the range 
0.025 < Y < %. 
Case 5.  Two- and three-dimensional strains 

The rapid-pressure model is used to compute three strain flows: plane strain and 
axisymmetric contraction and expansion. These flows are another test case as the 
rapid-pressure model has not used these flows to set the calibration coefficients. The 
results are compared to the DNS of Lee & Reynolds (1985). Because the simulations 
are conducted at low Reynolds number the anisotropies are expected to be somewhat 
higher than those of fully developed turbulence. However, the use of the physical 
experiments conducted at higher Reynolds number is also somewhat suspect as the 
initial conditions on e /Sk ,  as has been pointed out by Speziale et al. (1991), are not 
known with certainty. The same test cases as those given in Speziale et al. (1991) are 
used. Our results are also compared to the SSG model as it appears to be the current 
model that gives the best results. The evolution of the kinetic energy for these flows is 
not presented; the results for the models are in very good agreement with the data and 
each other and do not definitively distinguish between the various models. 

Figure 5(a) shows the evolution of the anisotropy for the plane strain, Sij = 
S*(Sil Sjl -Si, Sj,) starting from isotropic initial conditions. Figures 5(b) and 5(c) show 
the evolution of the anisotropy for the axisymmetric contraction and expansion. Here 
for the contraction S, = S*(Sil Sjl-fSi, dj2-fSi3 SjJ. For the expansion S is replaced 
with -S .  Results for all the plane and axisymmetric strain flows capture the trends 
nicely. 

10. General discussion 
The constraints of geostrophy, realizability, joint-realizability, normalization and 

continuity have been used to create a variable-coefficient rapid-pressure representation 
that is frame indifferent in the two-componential limit, Qj uj = 0. The use of the MFI 
or the realizability-type constraints to obtain values of unknown coefficients in the 
models has been justifiably criticized on the grounds that one should not use extreme 
states to set unknown constants. It should be made clear that the present methodology 
does not use the limit states to fix the coefficients in the model: the present rapid- 
pressure covariance representation is not a constant-coefficient model and the extreme 
states have been invoked only to ensure that the variable coefficients in the rapid- 
pressure representation behave properly as the limit states are approached. Away from 
the extreme states the model coefficients vary in a way that reflects not the extreme 
states but the structural equilibrium state used to calibrate the model. 

It should also be kept in mind that any rigorous interpretation of the physics of these 
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realizability limits - requiring all the scales of the motion to be two-componential in an 
arbitrary plane - is inconsistent with the assumptions underlying the development of 
these turbulence modelling methods. However, from the point of view of a useful 
engineering approximation, the fact that the first decade, K L  < 10, following the 
arguments of $3, of the flow becomes two-componential means that the pertinent 
eigenvalue of the Reynolds stress becomes small. As the largest contribution to the 
rapid pressure is from the largest scales of the motion, the rapid-pressure covariance 
will begin to approach its realizable limit. This is not an unusual occurrence in flows 
of engineering interest. The anisotropy-invariance maps given in the works of Antonia, 
Djenidi & Spalart ( 1 9 9 4 ~ )  and Antonia, Spalart & Mariani (1994b) using DNS of 
wall-bounded flows with and without suction indicate that the flow comes very close 
to the two-componential state: F = 0. 

From a strictly practical point of view - computability - incorporating the realiz- 
ability constraints into the models for unknown correlations has some very tangible 
and beneficial effects. During the convergence to a solution, from more or less arbitrary 
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initial conditions, the iteration will be plagued with negative normal stresses and 
correlation coefficients larger than one, either of which can destabilize and terminate 
the computation. When this occurs, the solution is clipped and the solution procedure 
restarted from the new clipped initial conditions. The frequency of this clipping and 
resetting procedure is substantially reduced (in simple flows even eliminated) when 
using realizable models. Part of the reluctance in accepting second-order modelling 
methods is that turbulence simulations of complex inhomogeneous flows with multi- 
dimensional mean flows which may have body forces, streamline curvature or 
rotational effects, are extremely difficult to compute ; such difficulties are substantially 
reduced with realizable models. 

How one obtains realizable turbulence is not an issue in problems with steady states, 
as long as the final state is realizable and the computation is not irrevocably 
destabilized during the computation. This, however, is not the case for problems that 
are unsteady. For time-varying flows for which second-order methods are still suitable 
realizability is a serious issue. Our experience with the Reynolds averaging procedure, 
in buoyantly driven elliptic flows with rotation, indicates that the averaging operation 
acts as a smoothing operation : the rapidly fluctuating instantaneous dynamics are 
subsumed by the averaging procedure leaving the slow-time large-scale parts of the 
flow, evolving on timescales commensurate with the integral timescale, to be captured 
by the computation. If the simulation is to reflect the physics of the time evolution of 
the flow, it must stay realizable. Clearly excessive realizability violations, requiring a 
clipping and resetting of the solution, which produces a solution that never evolves far 
from the transient associated with the most recent clipped initial condition, are not 
acceptable. In such flows, satisfying the realizability constraint has very important 
consequences for the validity of the time evolution of the flow. 

The coefficients of the tensor polynomials used to present unknown quantities in a 
constitutive relation are, according to the theory, variable functions of the invariants 
of the independent tensors and, thus, depend on the state of the turbulence. The 
coefficients in ‘realizable’ turbulence models using some form of a realizability 
constraint are obtained by requiring that the rate of change of a positive semi-definite 
quantity be zero when some extreme state is reached. The coefficients so obtained are 
constants and are strictly valid only at the extreme state and yet are used to compute 
general flows that are nowhere near the extreme states. This is a fundamental limitation 
of all constant-coefficient models that use a limit state to set the model coefficients. In 
some models, one adds to the constant determined by the extreme state ad hoc 
corrections that depend on F, a quantity which parameterizes the departure from the 
realizable state. These corrections, which vanish as the limit state is approached, 
require some sort of numerical optimization involving several flows. This sketchily 
summarizes the methodology used in other ‘realizable’ turbulence models. In the 
quasi-linear SSG model the coefficients are, for the most part, constants that are also 
set by matching to a limit state. In the case of the SSG model the limit state is that of 
a structural equilibrium which is a much closer approximation to the turbulence 
expected to be seen in engineering problems. The constants in the SSG model may be 
viewed as the values of the non-constant coefficients near the equilibrium state. 

In the present method the realizability principles are used to ensure that the 
coefficients in the constitutive relations, valid for all states of the mechanical 
turbulence, are consistent with realizability principles. Recall that the basic form of the 
rapid-pressure model comprises two parts : X&t and FX& X&,t satisfies sim- 
ultaneously the five constraints - geostrophy, realizability, joint-realizability, nor- 
malization and continuity, while FX;,,, also obtained analytically, satisfies the 
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substantially less extreme joint-realizability as well as the homogeneous form of the 
normalization and continuity constraints. Thus, although the model coefficients are 
consistent with an extreme state, they are not constants fixed to their values at the 
extreme state. An extreme state of the flow has only been used to ensure that the 
variable coefficients have the proper behaviour in this limit - not to fix or calibrate the 
coefficients. The coefficients in the Ifjkz part of the model along with the additional 
FX&, terms are, for the mechanical turbulence, fully general. 

It is to this basic model, valid for all states of turbulence, that one adds the FX& 
term that is necessary to attract the solution to its fixed points from arbitrary initial 
conditions. The requirement of asymptotic consistency with an equilibrium state, first 
used by Speziale et al. (1990b), is the single most empirically consistent physical 
requirement one can impose. Second-order closure methodology is built around the 
assumption that there is, to a suitable approximation, for the class of flows to which 
second-order methods are appropriate, an equilibrium state and in the absence of 
disturbing forces the flow relaxes to that state on a timescale similar to the eddy 
turnover time. There is very little evidence pointing to the fact that a unique 
equilibrium state exists. Such an equilibrium will be weakly dependent on initial 
conditions. The issue, however, is whether such an assumption is a useful 
approximation for the flows that these Reynolds stress models can be used to calculate. 
The weakness of the dependence suggests such is the case. It is this phenomenological 
behaviour that is built into the model by requiring the fixed points of the modelled 
equations to be consistent with those obtained from experiment. The assumption that 
allows the parameterization of the two-point correlation as a local function of the 
anisotropy tensor, Xijkl  = Xijkz (by), is also such an equilibrium assumption. 

The penalty paid for these additional features associated with the satisfaction of the 
mathematical constraints is a more complex model. It should, however, be pointed out 
that the present 2DMFI model has the same tensor bases as the FLT model and is 
therefore no more complex except for the expressions for the non-constant coefficients. 
Moreover, the penalty is slight in the light of the reduction of the computational 
difficulties found during the calculation of quasi-steady time-evolving flows with this 
representation for the rapid pressure. The model, along with several others, has been 
used to compute inhomogeneous buoyancy-driven rotating flows that occur in the 
Czochralski crystal growth melt in which the Reynolds stress are three-dimensional 
(Ristorcelli & Lumley 199 1 a, 1993 ; Ristorcelli 1991). In computing these time-varying 
flows it was found that the present 2DMFI model produced virtually no realizability 
violations during the course of the flow evolution. For a quasi-steady flow this is a 
crucial point : every time realizability is violated the solution is reset and the solution 
never evolves past the transients associated with reseting the initial conditions. Such a 
computation cannot be expected to reflect an ensemble average of the original system. 

11. Limitations, shortcomings and suggestions for future work 
In the effort to produce a representation for the rapid-pressure correlation valid for 

the class of flows to which second-order modelling is suitable, some shortcomings in 
the data on homogeneous ' building block ' flows have become apparent. Though 
homogeneous shear seems reasonably well-documented it is not clear whether the 
asymptotic states have been reached in some of the experiments. Moreover, the 
discrepancy between the high values of b z  obtained in the DNS versus those seen in 
the laboratory data has not been explained. Additional work expanding on the notion 
of two classes of flows as suggested in Tavoularis & Karnik (1989) might be considered. 
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For homogeneous shear with rotation, a very basic flow, there seem to be no 
substantial data - LES, DNS or experimental - definitively describing its stationary 
states. At the very least, an assessment of the bifurcation diagram (c /Sk) ,  versus 
(sZ/S), predicted by the linear theory would be useful. Also the equilibrium values 
( P / c ) %  would be useful for further developments regarding the dissipation equation’s 
dependence on rotation. This may remedy the under-prediction of the kinetic energy 
growth rates as a function of sZ/S for all the models. The present class of dissipation 
equations predicts an asymptotic state in which (P/c), is a model-dependent constant, 
which for all rotation rates has the same value as in asymptotic shear. Had the 
stationary values of the anisotropy tensor and (P/c), and (e /Sk) ,  been available, 
application of the present methodology would have produced a set of modelled 
evolution equations whose fixed points matched the fixed points of rotating shear, 
independent of the deficiencies in the dissipation equation. The present calibration has 
used only equilibrium data and hence is independent of the model form of the 
dissipation equation. This then leads naturally to the fixed-point behaviour of these 
classes of turbulence models; some useful thoughts on this issue are given in Speziale 
et al. (1991). 

The geostrophic constraint results from the fact that a wide class of horizontally 
divergence-free fields, G$U,,~ = 0, are frame indifferent. This implies very little about 
either the vector components of the velocity field or its dependence on the spatial 
coordinates : its componentiality or its dimensionality. The simultaneous satisfaction 
of the geostrophic and realizability constraints means that the present representation 
cannot treat a general three-componential MFI turbulence, i.e. one in which Oj uj =+ 0 
but sZjui,j = 0. This is a direct consequence of the fact that any parameterization of 
the unknown quantities in terms of only the Reynolds stresses cannot account for the 
anisotropy of the two-point fields. In problems of engineering interest, the flow field is 
typically bounded and has no-flux (or only steady-flux) boundary conditions. In such 
situations the materially frame-indifferent turbulence field will also be the Oj uj = 0 
field. It is this vision of a flow of engineering interest that forms the choice to satisfy 
simultaneously the geostrophic and realizable constraints in spite of the loss of 
generality, which does not appear to be possible anyway in the context of these types 
of single-point Reynolds stress closures. 

In $6 the nature of the singular representation of the volume integral of the two- 
point velocity correlation brought to our attention by Reynolds (1994) was discussed. 
As pointed out by Reynolds (1994), the expression for the rapid-pressure covariance 
at the one-dimensional limit is singular and depends on the relative rates at which the 
two eigenvalues are lost. Reynolds (1994) has shown that X,,,, = 0 and X,,,, = 1 if one 
approaches the one-dimensional limit with one eigenvalue already zero ; while X,,,, = 

X,,,, = if the limit is approached when both eigenvalues are lost at the same rate. The 
relevance of this singularity in the context of the model has been discussed above; 
Reynolds (1994) gives a discussion with respect to the implied dimensionality of the 
instantaneous velocity field. The fundamental issue here is about the two-point 
correlation of the field. When Xijrcl is parameterized in terms of the one-point Reynolds 
stress it is found that when ( u ,  u,) vanishes X,,,, also vanishes. Such models cannot 
distinguish a flow field that has lost an eigenvalue (u,u,) from a flow field that is 
perfectly coherent in the x, direction. This stems from the fact that the parameterization 
of the energy spectrum solely in terms of the anisotropy tensor is incomplete, as has 
been seen in rapidly rotating isotropic flows in which there is a very strong anisotropy 
of the coherence. This is a very interesting point theoretically and clearly delineates the 
class of flows that this type of model cannot handle. This limitation is an area of 
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research that Reynolds has been following; Reynolds & Kassinos (1994) contains 
recent developments. 

The present rapid-pressure model is expected to distinguish itself in complex three- 
dimensional flows. For the planar flows for which test cases exist the model out- 
performs the nonlinear models using realizability-type constraints. It is only moderately 
better than the topologically generic form of the SSG model suitable for simple planar 
flows. It is unfortunate that there exist no suitable DNS or LES of flows in which the 
presence of a body force causes the larger scales of the motion to become quasi-two- 
componential. Such a test case would help further establish the utility of incorporating 
some of the more complex physics into the structure of the model as well as, perhaps, 
pointing out the potential deficiencies of models developed using simple planar mean 
flows. 

12. Summary and conclusions 
A representation of the rapid-pressure-strain correlation with a minimum of ad hoc 

constants has been devised. The rapid-pressure model produces the proper behaviour 
in five different limits : 

(i) the materially frame-indifferent limit in which the eigenvalues of the Reynolds 
stress tensor, (ui u,), and (00) (ui u,) - (hi) (Ou,) aligned with the axis of rotation, 
vanish; 

(ii) the realizable limit in which the eigenvalue of the Reynolds stress tensor aligned 
in an arbitrary direction vanishes; 

(iii) the joint-realizable limit in which an arbitrary eigenvalue of 

vanishes ; 
(iv) the isotropic limit in which the anisotropy tensor, bij = 0, vanishes; 
(v) the asymptotic structural equilibrium limit in which ( D / D t )  bij = 0. The general 

form of the model is 

where the Xijkl are polynomials in the anisotropy tensor. Xfjkl satisfies the following 
five constraints : the limit states of (i) geostrophy, (ii) realizability, (iii), joint- 
realizability, and the integral constraints of (iv) continuity and (v) normalization. 
XGkl satisfies the three constraints of joint-realizability, continuity and normalization. 
Both X&, and FXCkl are obtained analytically: the represent the simplest analytical 
expressions that are capable of satisfying all the mathematical constraints. The first 
four limit states are used to ensure that the variable model coefficients behave properly 
as each of the limit states is approached; they are not used to calibrate or set the 
coefficients to some constant value valid only at a limit state. 
X&, on the other hand, is obtained by requiring asymptotic consistency with a 

structural equilibrium state and does involve setting the coefficients to a particular 
constant value corresponding to a specific flow situation. The experimentally 
determined stationary values of the anisotropy tensor, b;, and ( 9 / ~ ) ~  and (e /Sk) ,  
have been used to ensure that the fixed points of the modelled equations match the 
experimentally determined fixed points. This process, in as much as it has been carried 
out for the homogeneous shear, should produce a useful model for three-dimensional 
mean flows in which the mean shear is an important production mechanism. It should 
be noted that this calibration procedure is done for a particular model for the return 
pressure covariance. The representation can be recalibrated for a different class of 
flows or a different return model. 

Xijkl  = Ifjkl +FA-&, + FX& 
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A few novel points, regarding the rapid-pressure covariance representation merit 
special mention : 

(i) The present representation of the rapid-pressure covariance has variable 
coefficients. All the coefficients in the basic portion of the model are obtained from first 
principles: they are functions of the state of the turbulence and are valid for all states 
of mechanical turbulence. The coefficients are not constants fixed to their values at 
extreme or equilibrium states - the extreme states have been used only to ensure that 
the variable coefficients in the rapid-pressure representation behave properly as these 
limit states are approached. 

(ii) Away from the extreme states the model coefficients vary in a way that does not 
reflect the extreme states but the structural equilibrium state used to calibrate the 
model. The present form of the model is consistent with the equilibrium homogeneous 
shear. This ensures, with the removal of disturbing forces, that the flow relaxes to the 
fixed points of the homogeneous shear. 

(iii) The rapid-pressure covariance representation is at present the only variable- 
coefficient model that is consistent with the fact that materially frame-indifferent flows 
are horizontally divergence free. In bounded flows of geophysical or engineering 
interest a vanishing horizontal divergence, Qj u ( , ~  Si, + 0, is typically accompanied by 
Qj uj +O. This MFI requirement for the representation has been satisfied by ensuring 
that the geostrophic constraint is satisfied as Qjuj  vanishes. 

The frame-indifference requirement was first realized in the context of flows 
dependent on only two independent variables (Speziale 1981, 1985, 1989). There are, 
however, several classes of MFI flows that do not fall in the 2DMFI category. It has 
been shown that when the velocity is horizontally divergence free the vertical vorticity 
equation, which is the evolution equation for the streamfunction, is MFI. MFI of the 
whole field is then determined by the nature of the equation for the vertical velocity. 
If (i) w = 0 or (ii) the pressure is independent of the axial coordinate or (iii) determined 
by a hydrostatic balance with the temperature then the flow will be MFI. Such flows 
in which MFI is a consideration occur in small-aspect-ratio situations or in flows in 
which a strong stable stratification or magnetic fields acts to ' two-componentialize ' the 
flow. In bounded rotating flows the satisfaction of the geostrophic constraint ensures 
consistency with the Taylor-Proudman theorem : the modelled equations are frame 
indifferent when the vanishing of Q j u j  is the result of Coriolis forces. 

There is some interesting physics underlying this mathematical requirement. In 
general an MFI flow is one that is non-divergent in a plane defined by the axis of 
rotation. Thus an MFI flow is one in which the stretching of vorticity along the axis 
of rotation is, for whatever reason, vanishingly small. 

This frame invariance for specific classes of horizontally divergence-free fields is the 
most notable feature of the model and is expected to be important for the computation 
of engineering and geophysical flows in which dynamical or kinematical agencies 
leading to such a condition are important. These flows might include: (i) turbulence in 
which a strong stable stratification suppresses the vertical component of the velocity 
field; (ii) turbulence affected by magnetic fields; (iii) turbulence influenced by 
centrifugal forces associated with streamline curvature such as those that occur in 
turbomachinery, swirling combustion, tornadoes, or in the growth of crystals ; (iv) 
turbulence influenced by Coriolis forces in which the largest scales of the flow are 
nominally two-componential, obeying shallow-water-type equations such as those 
occurring in large-scale geophysical flows in which a geostrophic limit is attained 
outside the boundary layers; (v) turbulence near a free surface at which one of the 
components of the fluctuating velocity is suppressed; (vi) the environmentally 
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important shallow-water flows such as those associated with waste heat exchange, 
near-shore pollution dispersal, and mixing associated with thermal and salinity inflows. 
However, until suitable data bases, DNS or LES, of these complex flows with body 
forces become available, the full potential of a rapid-pressure model built from first 
principles in three-dimensional flows cannot be verified. The present model does 
however reproduce the experimental data at least as well as the currently available 
models for a wide class of planar flows for which experimental data is available. 
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Appendix A. A synopsis of the final rapid-pressure correlation 
representation 

general final form of the model is 
For convenience and clarity the final form of the model is summarized here. The 

q j / 2 q 2  = [C,- 211c; + 3IIIc;l si, 
+C4[bi,S,j+bj,S,i-$(bS)6ij]+Cy (bS) [b;j+211/36ij] 

+ C,[bi, Wp,+ bjp W,,]+[C, (bS) + C y  (b2S)] b,, 

+ C,[b:, WPj + b;, W,,] + C,[bi, W,, b;, + bj, W,, b;J. 

+ C,[b:p S,j + b;, S,i - $( b2S) Sij] 

For flows in rotating coordinate systems, F& appearing in 17; must be replaced by the 
total rotation tensor Kj + ejik Qk. The coefficients C, are given by a sum of the basic 
model coefficients, B,, which come from first principles, and the calibration coefficients 
A;. The basic model coefficients are related to the coefficients A ,  in the fourth-order 
tensor polynomial expression by 

B, = 2(A1 + A , )  = &[41+42II-0.1F(221+420II)]/II,, 

B; = A g + A l o  = -y( l  +311)/IId+0.6F/(1 +3II), 
Bj” = -$(Al1+Al2+2A,,) = (55+8411)/3II,, 

B4 = A, + A, + 2A6 = 3/11d - 0.9F/( 1 + 3II), 
By = A,,+A1,+4Al, = -9/IId, 

B, = A , - A ,  = -7&(10+21F)/(1+311), 
B, = 2A, + 4A10 = - 1 811/IId + 3F/( 1 + 3II), 
B, = A,+A7+2A,-2Ag-2Alo = -9/11d-1.8F/(1+311), 

B, = A,-A7 = +(3F-5)/(1+311), 
B, = Al1-Al2 = -3/(1+3II). 
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The Ai are given in Appendix C. The Ci, which reflect the application of the additional 
constraint, asymptotic consistency with an equilibrium state, are obtained from the Bi 
using Ct = Bi+FA:. They are given by 

C, = B , - 2 F ( l O A C , + 3 A ~ + A ~ , ) I 1 / 5 - F ( A ~ , + A ~ , +  14AE3))111/5, 

C;l = Bz + F(A: + A:,,), 
c :=Bj" - ,  ' F  ( A:, + A:2 +ME,) ,  

C, = B, + F( - 3AE + II(A;, + A; ,  +4A;,)), 

Cg' = B&"+F(A:,+A?,+4A;,), 

C, = B, + F( - $4; + $II( - A:l + 3 A;,  + 4A;,)), 

C6 = B6 + F(2Ag + 4A;,), 

C, = B, - 3F(AC, + A :  +A:,,),  

C, = Ba-~F(7A;+3A;+3Ag-A:,), 

Cg = Bg +F(A;, - A;,),  

where the A: are expressed in terms of the seven free parameters A:{i = 5,8-13). 
Without further specifying the calibration coefficients, At,  the above rapid-pressure 
model is general, suitable for the flows for which second-order modelling is suitable. 
Calibration to a particular archetypal flow, by matching the fixed points of the 
modelled evolution equations with experimentally determined fixed points, will result 
in a model suitable for diverse flows within that class of flows. For a flow in which the 
dominant production mechanism is associated with the mean shear, homogeneous 
shear is used to set the model coefficients. Asymptotic consistency with homogeneous 
equilibrium shear and a linear model for the return coefficient produce the following 
values for the calibration coefficients: 

A: = - 0.29 + 0.06(AE0 - A:),  

Ai l  = - 3.6 + .5AE,, - 2A;, - 12.74  - 3.8Ag, 

A:,  = -24.5-44.84:,--2A?,+28.7AC,-8.654:, 

where A: = 0.6, A; = -0.6, A:,, = -0.15, A;,  = 0. The calibration coefficients reflect 
the asymptotic value of the coefficients in the return-to-isotropy model used. The usual 
canonical form - C, ebii + C, e[b:i + 211/3Si,] with C, = 0 and C, = 2 - 3 1 IIF1'2 is used. 

The homogeneous forms of the continuity and normalization conditions have been 
used to produce relations between the free parameters. They are 

A; +4AC, - 2A: I1 + III(A:, + A:, + 2A:,) = 0,  

A; + A; + 5 4  - II(A:, + A;,  + 4 4 , )  = 0, 

A ; + A ; + 5 A ; + A g + A ; ,  = 0, 

3 4  + 2 4  - 2 4  I1 + 4 4 ,  I11 = 0,  

3A; +4Ag - 211(AE, + 2A;,) = 0, 

3A; +4AC, + 2A& = 0. 

The fact that the A: must satisfy these equations has been used to express six of the 
Az{i = 1-4,6,7} in terms of the seven A;{i = 5,8-13} in the expressions for the 
Ci = Bi+ FA:. 
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Appendix B. The calibration coefficients in the rapid-pressure 
representation 

The calibration process is described in more detail in this Appendix. The model has 
been calibrated to match the fixed points of homogeneous shear. The following 
equations describe the evolution of the anisotropy tensor : 

(D/Dt) /  bij = - 2 € i k p  bpj 4, - 2€jjkp bpi 52, - [bip Uj,p + bjp Ui,p -$a,, (bS)]  

-$Sij+2bi, ( b S )  +17~j/q2-(C,-2)bii€/q2+ C,[b;~+211/36ij]e/q2. 

For the planar flow case with axial mean flow and mean shear, U,,,, the algebraic 
equations for the fixed points, setting ( D / D t )  bij = 0,  become 

(bll +;) (2+4b1, Sk/e)-4b12 SIC/€+ ( S k / € )  17; , / (Sk)-  C, b,, -$ 
+ C2(b11 b,, + b12 b,, +$I) - 8(52/S) ( S k / € )  b,, = 0, 

b12(2 +4b1, SIC/€) - 2(b2, +$) Sk/e+ (SIC/€) 17i2/(Sk)  - C, b,, 

+ c, b,,(bl,+ b22) + 4(52/S) (Sk/S)  (b,, -b,J = 0, 
(b,, +$) (2  + 4b,, SIC/€) +(SIC/€) 17',,/(Sk) - C, b,, -$ 

+ C,(b,, b,, + b,, b,, +fII) + 8(sZ/S) (Sk/e)  b,, = 0, 

(b33+;) (2+4b1, Sk/e)+(Sk/€)17' , , / (Sk)-Cl  b33-$+ C2(b33b33+$II) = 0. 

The last equation for b,, is not linearly independent as b, = 0. The following fixed 
point values are taken to be representative : b,", = 0.203, b;", = - 0.156, bg = - 0.143, 
bg = -0.06, (Sk/e) ,  = 5.54, (.!?/€), = 1.73. They represent an average of numerical 
and experimental data as given in the text. Inserting the data into the algebraic 
equations above produces the following values of the invariants for the anisotropy 
tensor: 11, = -0.0587, 111, = 0.0032, F, = 0.5736. The solution of the algebraic 
equations describing the stationary state of homogeneous shear produces the following 
values for the calibration coefficients : 

A: = -0.3388 +0.06(4+ A~,)+0.015C~-0.008C,", 

A;,  = - 14.35-2AE3- 12.68Ag+3.80Ag-5.072A~,+3.157CF +0.5898Cp, 

A;,  = - 16.87-2AE3+28.7Ai -8.05Ag-44.81AiO- 12.17CF -0.291CF. 

The model has been left as general as possible - allowing for any return term of the 
canonical form - C, ebij + C,[b;, + 211/3Sij], where the Ci are not necessarily constants 
but have achieved their asymptotic values Ci = CF. Choosing a linear Rotta-type 
return term setting the nonlinear return coefficient to zero, C, = 0, produces 

A: = - 0.29 + 0.06(A;, -A;) ,  

A;, = -3.6+5A;,-2Ai3- 12.7A;-3.8AC,, 

A;,  = - 24.5 - 44.8A;, - 2AE, + 28.74; - 8.65AG, 

where the following values of the free parameters have been chosen: A: = 0.6, 
A: = -0.6, Aio = -0.15, = 0. Note that this calibration is independent of the 
dissipation equation but not independent of the return pressure model. These indicated 
calibration coefficients are appropriate for the class of flows in which the mean shear 
is the predominant production mechanism. 
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The component form of the rapid pressure used in the equations for the stationary 
state is 

Appendix C. The Cayley-Hamilton theorem generalization 

relating different powers of products of matrices. 
Reference has been made to a generalized Cayley-Hamilton theorem (Rivlin 1955) 

A B C + A C B + B C A + B A C + C A B + C B A  

= A ( ( B C ) - ( B )  ( C > ) + B ( ( C A ) - ( C )  ( A ) ) + C ( ( A B ) - ( A )  ( B ) )  

+(BC+ CB) ( A )  + (CA + AC)(B)  + (AB +BA) ( C )  

+ 1 [ ( A )  ( B )  (C> - ( A )  (BC)  - ( B )  ( A C )  - ( C )  ( A B )  

+(ABC)+(CBA)] .  

The Cayley-Hamilton generalization is easily derivable from the Cayley-Hamilton 
theorem applied to sums and differences of matrices A ,  B, C .  The theorem is useful 
in eliminating redundant tensor bases in tensor representation theorems. Here ( ) is 
used to indicate the trace. The Cayley-Hamilton theorem for the anisotropy tensor is 
b3 = i ( b 3 )  1 +f ( b 2 )  b. The theorem can also be used to express 

bSb = - [bzS+Sb2]+ (bS)b+~(b2)S+(b2S) I ,  

bSb2+b2Sb = - i (b3)S+(b2S)b+(bS)b2. 

Appendix D. The rapid-pressure models 

follows : 
The detailed forms of the pressure-strain models referred to in this paper are as 
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The Launder, Reece & Rodi model (LRR)  

17.. 23 = - 2C, Ebii + $KSij + C, K(bi, Sjk + bjk Sik -$bkl S,, Si j )  + C, K(bik yk + bik qk), 
where 

C, = 1.5, C, = 1.75, C, = 1.31. 

The Shih & Lumley model (SL)  

17.. 29 = -/3~bij+$KS,,+ 12a5 K(bikSjk+bikSik-$bkl SklSii) 

+;(2-7a,)K(bik yk+bjk &) 

+$K(bi, b,, Sj, + bj, b,, Si, - 2bik Sk, blj - 3bk, S,, bii) 

+ $K(bi, b,m yrn + bj, btm K m ) ,  
where 

@ 
9 

/3 = 2+-exp( -7.77/Re,1/2){72/RE,1/2+80.1 1n[1+62.4(-11+2.3111)]} 

F = 1 + 911 + 27111, I 1  = - $bij bii, I11 = $bij bik bki 

4 K 2  
Re, = Re - --, 

, - 9 v e  

The Fu, Launder & Tselepidakis model (FLT)  
17.. 29 = /3 1 Ebii+/3,€(bikbkj-$bklbklSij)+%KSij+ 1.2K(bikSik+bikSik-~bk, Sk,Sii) 

+gK(bik y k  + bik q,) + $K(bi, b,, sj, + b,, b,, si, - 2bik s,, bZj - 3b,, s,, bii) 

+;K(bik bk ,  y ,  + bjk bk, Ki) -y?[811(bik yk + bjk q k )  

+ 12(bik bki Y m  bmj + bjk bkl q r n  bmi)l, 

where 
/3, = 12011F'i2+2F1/2-2, /3, = 14411F"2 

The Speziale, Sarkar & Gatski model (SSG) 
17 i j  = - ( 2 C l ~ + C ~ ~ ) b i i + C 2 ~ ( b i k b k j - $ b k , b k , S i j ) + ( C , - C , * I I ~ ~ 2 )  KSij 

+ c, K(bik sjk + bjk s i k  - $bkl sk, Si j )  + c, K(b,, yk + bik Kk), 
where 

C,  = 1.7, CT = 1.80, C, = 4.2, C, = 4 ,  C ;  = 1.30, C, = 1.25 

C, = 0.40, 11, = bij bij. 
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